458 research outputs found

    Effect of snow microstructure and subnivean water bodies on microwave radiometry of seasonal snow

    Get PDF
    Remote sensing using microwave radiometry is an acknowledged method for monitoring various environmental processes in the cryosphere, atmosphere, soil, vegetation and oceans. Several decades long time series of spaceborne passive microwave observations can be used to detect trends relating to climate change, while present measurements provide information on the current state of the environment. Unlike optical wavelengths, microwaves are mostly insensitive to atmospheric and lighting conditions and are therefore suitable for monitoring seasonal snow in the Arctic. One of the major challenges in the utilization of spaceborne passive microwave observations for snow measurements is the poor spatial resolution of instruments. The interpretation of measurements over heterogeneous areas requires sophisticated microwave emission models relating the measured parameters to physical properties of snow, vegetation and the subnivean layer. Especially the high contrast in the electrical properties of soil and liquid water introduces inaccuracies in the retrieved parameters close to coastlines, lakes and wetlands, if the subnivean water bodies are not accounted for in the algorithm. The first focus point of this thesis is the modelling of brightness temperature of ice- and snow-covered water bodies and their differences from snow-covered forested and open land areas. Methods for modelling the microwave signatures of water bodies and for using that information in the retrieval of snow parameters from passive microwave measurements are presented in this thesis. The second focus point is the effect of snow microstructure on its microwave signature. Even small changes in the size of scattering particles, snow grains, modify the measured brightness temperature notably. The coupling of different modelled and measured snow microstructural parameters with a microwave snow emission model and the application of those parameters in the retrieval of snow parameters from remote sensing data are studied

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    Development and Evaluation of a Multi-Year Fractional Surface Water Data Set Derived from Active/Passive Microwave Remote Sensing Data

    Get PDF
    abstract: The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land cover-supported, atmospherically-corrected dynamic mixture model applied to 20+ years (1992–2013) of combined, daily, passive/active microwave remote sensing data. The resulting product, known as Surface WAter Microwave Product Series (SWAMPS), shows strong microwave sensitivity to sub-grid scale open water and inundated wetlands comprising open plant canopies. SWAMPS’ FW compares favorably (R[superscript 2] = 91%–94%) with higher-resolution, global-scale maps of open water from MODIS and SRTM-MOD44W. Correspondence of SWAMPS with open water and wetland products from satellite SAR in Alaska and the Amazon deteriorates when exposed wetlands or inundated forests captured by the SAR products were added to the open water fraction reflecting SWAMPS’ inability to detect water underneath the soil surface or beneath closed forest canopies. Except for a brief period of drying during the first 4 years of observation, the inundation extent for the global domain excluding the coast was largely stable. Regionally, inundation in North America is advancing while inundation is on the retreat in Tropical Africa and North Eurasia. SWAMPS provides a consistent and long-term global record of daily FW dynamics, with documented accuracies suitable for hydrologic assessment and global change-related investigations.The final version of this article, as published in Remote Sensing, can be viewed online at: http://www.mdpi.com/2072-4292/7/12/1584

    Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015

    Get PDF
    A new automated method enabling consistent satellite assessment of seasonal lake ice phenology at 5 km resolution was developed for all lake pixels (water coverage  ≥  90 %) in the Northern Hemisphere using 36.5 GHz H-polarized brightness temperature (Tb) observations from the Advanced Microwave Scanning Radiometer for EOS and Advanced Microwave Scanning Radiometer 2 (AMSR-E/2) sensors. The lake phenology metrics include seasonal timing and duration of annual ice cover. A moving t test (MTT) algorithm allows for automated lake ice retrievals with daily temporal fidelity and 5 km resolution gridding. The resulting ice phenology record shows strong agreement with available ground-based observations from the Global Lake and River Ice Phenology Database (95.4 % temporal agreement) and favorable correlations (R) with alternative ice phenology records from the Interactive Multisensor Snow and Ice Mapping System (R = 0.84 for water clear of ice (WCI) dates; R = 0.41 for complete freeze over (CFO) dates) and Canadian Ice Service (R = 0.86 for WCI dates; R = 0.69 for CFO dates). Analysis of the resulting 12-year (2002–2015) AMSR-E/2 ice record indicates increasingly shorter ice cover duration for 43 out of 71 (60.6 %) Northern Hemisphere lakes examined, with significant (p  \u3c  0.05) regional trends toward earlier ice melting for only five lakes. Higher-latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower-latitude lakes, consistent with enhanced polar warming. This study documents a new satellite-based approach for rapid assessment and regional monitoring of seasonal ice cover changes over large lakes, with resulting accuracy suitable for global change studies

    Development and Evaluation of a Multi-Year Fractional Surface Water Data Set Derived from Active/Passive Microwave Remote Sensing Data

    Full text link
    The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land cover-supported, atmospherically-corrected dynamic mixture model applied to 20+ years (1992–2013) of combined, daily, passive/active microwave remote sensing data. The resulting product, known as Surface WAter Microwave Product Series (SWAMPS), shows strong microwave sensitivity to sub-grid scale open water and inundated wetlands comprising open plant canopies. SWAMPS’ FW compares favorably (R2 = 91%–94%) with higher-resolution, global-scale maps of open water from MODIS and SRTM-MOD44W. Correspondence of SWAMPS with open water and wetland products from satellite SAR in Alaska and the Amazon deteriorates when exposed wetlands or inundated forests captured by the SAR products were added to the open water fraction reflecting SWAMPS’ inability to detect water underneath the soil surface or beneath closed forest canopies. Except for a brief period of drying during the first 4 years of observation, the inundation extent for the global domain excluding the coast was largely stable. Regionally, inundation in North America is advancing while inundation is on the retreat in Tropical Africa and North Eurasia. SWAMPS provides a consistent and long-term global record of daily FW dynamics, with documented accuracies suitable for hydrologic assessment and global change-related investigations

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided

    Soil freezing in northern aapa mires:freeze/thaw -detection using portable L-band radiometer

    Get PDF
    Abstract. Seasonal soil freezing is one of the most significant sources of uncertainty in methane emissions from high latitude wetlands. Although soil freezing can be remotely sensed with current satellite-based instruments, the resolution is not high enough to detect small-scale variations within individual mires. In this study, a lightweight radiometer mounted on an unmanned aerial vehicle (UAV) was tested for detecting the freeze/thaw (F/T) state of the soil in aapa mires in Finnish Lapland. The three main research questions were the suitability of the radiometer for high resolution F/T detection, the existence of possible spatial patterns in the timing of soil freezing, and the effects of environmental factors on these spatial patterns. As this was the first study to use a UAV-mounted radiometer for F/T detection, there was no established method for retrieving the F/T state of the soil from the measured brightness temperature values. In previous studies using satellite-based instruments, the F/T state of the soil is determined by a threshold method where the measured values are scaled pixel-wise between known reference values of thawed and frozen soils and classified based on a fixed threshold. This method was modified for use with UAV measurements. The performance of the radiometer was evaluated by comparing the measurement results with tower-based radiometer and in-situ measurements in the study area. Spatial patterns in the timing of soil freezing were investigated using analysis of variance and measures of spatial autocorrelation. The effects of environmental factors were investigated using generalized linear models (GLM), generalized additive models (GAM), and hierarchical partitioning with environmental variables derived from readily available remote sensing materials. The F/T state of the soil was successfully determined from the UAV measurements, and the results were comparable to those of other measurements in the study area. Variation in the spatial distribution of the timing of soil freezing was detected at the local scale. The soil appeared to freeze as a result of two separate major freezing events and was therefore modeled as a binary response variable. Both GLM and GAM showed that the most significant factors contributing to the spatial patterns were the Enhanced Vegetation Index (EVI), the flark area and the standard deviation of the Topographic Wetness Index (TWI). Hierarchical partitioning highlighted the individual effects of EVI. All detected relationships were strongly correlated with the microtopographic structure of the mire, suggesting that seasonal freezing progresses differently on different surface types

    POTENTIAL CONTRASTS IN CO2 AND CH4 FLUX RESPONSE UNDER CHANGING CLIMATE CONDITIONS: A SATELLITE REMOTE SENSING DRIVEN ANALYSIS OF THE NET ECOSYSTEM CARBON BUDGET FOR ARCTIC AND BOREAL REGIONS

    Get PDF
    The impact of warming on the net ecosystem carbon budget (NECB) in Arctic-boreal regions remains highly uncertain. Heightened CH4 emissions from Arctic-boreal ecosystems could shift the northern NECB from an annual carbon sink further towards net carbon source. Northern wetland CH4 fluxes may be particularly sensitive to climate warming, increased soil temperatures and duration of the soil non-frozen period. Changes in northern high latitude surface hydrology will also impact the NECB, with surface and soil wetting resulting from thawing permafrost landscapes and shifts in precipitation patterns; summer drought conditions can potentially reduce vegetation productivity and land sink of atmospheric CO2 but also moderate the magnitude of CH4 increase. The first component of this work develops methods to assess seasonal variability and longer term trends in Arctic-boreal surface water inundation from satellite microwave observations, and quantifies estimate uncertainty. The second component of this work uses this information to improve understanding of impacts associated with changing environmental conditions on high latitude wetland CH4 emissions. The third component focuses on the development of a satellite remote sensing data informed Terrestrial Carbon Flux (TCF) model for northern wetland regions to quantify daily CH4 emissions and the NECB, in addition to vegetation productivity and landscape CO2 respiration loss. Finally, the fourth component of this work features further enhancement of the TCF model by improving representation of diverse tundra and boreal wetland ecosystem land cover types. A comprehensive database for tower eddy covariance CO2 and CH4 flux observations for the Arctic-boreal region was developed to support these efforts, providing an assessment of the TCF model ability to accurately quantify contemporary changes in regional terrestrial carbon sink/source strength

    Assessing the utility of geospatial technologies to investigate environmental change within lake systems

    Get PDF
    Over 50% of the world's population live within 3. km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future

    Applications of remote sensing in hydrology

    Get PDF
    OWRT Project no. B-160-COLO
    corecore