275 research outputs found

    Mobility and asymmetry effects in one-dimensional rock-paper-scissors games

    Full text link
    As the behavior of a system composed of cyclically competing species is strongly influenced by the presence of fluctuations, it is of interest to study cyclic dominance in low dimensions where these effects are the most prominent. We here discuss rock-paper-scissors games on a one-dimensional lattice where the interaction rates and the mobility can be species dependent. Allowing only single site occupation, we realize mobility by exchanging individuals of different species. When the interaction and swapping rates are symmetric, a strongly enhanced swapping rate yields an increased mixing of the species, leading to a mean-field like coexistence even in one-dimensional systems. This coexistence is transient when the rates are asymmetric, and eventually only one species will survive. Interestingly, in our spatial games the dominating species can differ from the species that would dominate in the corresponding nonspatial model. We identify different regimes in the parameter space and construct the corresponding dynamical phase diagram.Comment: 6 pages, 5 figures, to appear in Physical Review

    Stability and Diversity in Collective Adaptation

    Get PDF
    We derive a class of macroscopic differential equations that describe collective adaptation, starting from a discrete-time stochastic microscopic model. The behavior of each agent is a dynamic balance between adaptation that locally achieves the best action and memory loss that leads to randomized behavior. We show that, although individual agents interact with their environment and other agents in a purely self-interested way, macroscopic behavior can be interpreted as game dynamics. Application to several familiar, explicit game interactions shows that the adaptation dynamics exhibits a diversity of collective behaviors. The simplicity of the assumptions underlying the macroscopic equations suggests that these behaviors should be expected broadly in collective adaptation. We also analyze the adaptation dynamics from an information-theoretic viewpoint and discuss self-organization induced by information flux between agents, giving a novel view of collective adaptation.Comment: 22 pages, 23 figures; updated references, corrected typos, changed conten

    Multiple Steady States, Limit Cycles and Chaotic Attractors in Evolutionary Games with Logit Dynamics

    Get PDF
    This paper investigates, by means of simple, three and four strategy games, the occurrence of periodic and chaotic behaviour in a smooth version of the Best Response Dynamics, the Logit Dynamics. The main finding is that, unlike Replicator Dynamics, generic Hopf bifurcation and thus, stable limit cycles, do occur under the Logit Dynamics, even for three strategy games. Moreover, we show that the Logit Dynamics displays another bifurcation which cannot to occur under the Replicator Dynamics: the fold catastrophe. Finally, we find, in a four strategy game, a period-doubling route to chaotic dynamics under a 'weighted' version of the Logit Dynamics.

    Oscillatory dynamics in evolutionary games are suppressed by heterogeneous adaptation rates of players

    Get PDF
    Game dynamics in which three or more strategies are cyclically competitive, as represented by the rock-scissors-paper game, have attracted practical and theoretical interests. In evolutionary dynamics, cyclic competition results in oscillatory dynamics of densities of individual strategists. In finite-size populations, it is known that oscillations blow up until all but one strategies are eradicated if without mutation. In the present paper, we formalize replicator dynamics with players that have different adaptation rates. We show analytically and numerically that the heterogeneous adaptation rate suppresses the oscillation amplitude. In social dilemma games with cyclically competing strategies and homogeneous adaptation rates, altruistic strategies are often relatively weak and cannot survive in finite-size populations. In such situations, heterogeneous adaptation rates save coexistence of different strategies and hence promote altruism. When one strategy dominates the others without cyclic competition, fast adaptors earn more than slow adaptors. When not, mixture of fast and slow adaptors stabilizes population dynamics, and slow adaptation does not imply inefficiency for a player.Comment: 4 figure

    Coevolutionary dynamics of a variant of the cyclic Lotka-Volterra model with three-agent interactions

    Full text link
    We study a variant of the cyclic Lotka-Volterra model with three-agent interactions. Inspired by a multiplayer variation of the Rock-Paper-Scissors game, the model describes an ideal ecosystem in which cyclic competition among three species develops through cooperative predation. Its rate equations in a well-mixed environment display a degenerate Hopf bifurcation, occurring as reactions involving two predators plus one prey have the same rate as reactions involving two preys plus one predator. We estimate the magnitude of the stochastic noise at the bifurcation point, where finite size effects turn neutrally stable orbits into erratically diverging trajectories. In particular, we compare analytic predictions for the extinction probability, derived in the Fokker-Planck approximation, with numerical simulations based on the Gillespie stochastic algorithm. We then extend the analysis of the phase portrait to heterogeneous rates. In a well-mixed environment, we observe a continuum of degenerate Hopf bifurcations, generalizing the above one. Neutral stability ensues from a complex equilibrium between different reactions. Remarkably, on a two-dimensional lattice, all bifurcations disappear as a consequence of the spatial locality of the interactions. In the second part of the paper, we investigate the effects of mobility in a lattice metapopulation model with patches hosting several agents. We find that strategies propagate along the arms of rotating spirals, as they usually do in models of cyclic dominance. We observe propagation instabilities in the regime of large wavelengths. We also examine three-agent interactions inducing nonlinear diffusion.Comment: 22 pages, 13 figures. v2: version accepted for publication in EPJ

    Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    Full text link
    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.Comment: 16 pages, 13 figure

    Dynamics of a linearly-perturbed May-Leonard competition model

    Full text link
    The May--Leonard model was introduced to examine the behavior of three competing populations where rich dynamics, such as limit cycles and nonperiodic cyclic solutions, arise. In this work, we perturb the system by adding the capability of global mutations, allowing one species to evolve to the other two in a linear manner. We find that for small mutation rates the perturbed system not only retains some of the dynamics seen in the classical model, such as the three-species equal-population equilibrium bifurcating to a limit cycle, but also exhibits new behavior. For instance, we capture curves of fold bifurcations where pairs of equilibria emerge and then coalesce. As a result, we uncover parameter regimes with new types of stable fixed points that are distinct from the single- and dual-population equilibria characteristic of the original model. In short, a linear perturbation proves to be not at all trivial, with the modified system exhibiting new behavior captured even with small mutation rates.Comment: 29 pages, 12 figure

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure
    corecore