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Abstract

In an evolutionary set-up, we append an ecology of iterated Prisoner’s Dilemma

(IPD) game strategies, consisting of unconditional cooperators (AllC), unconditional

defectors (AllD) and reactive players (TFT) with two repeated strategies that have

received less attention in the evolutionary IPD game literature: the error-proof,

"generous" tit-for-tat (GTFT) which, with a certain probability, re-establishes co-

operation after a (possibly by mistake) defection of the opponent and the penitent,

"stimulus-response" (WSLS) strategy that resets cooperation after the opponent

punished for defection. An abundance of Rock-Paper-Scissors like patterns is dis-

covered in the 3x3 ecologies comprising Pavlovian and "generous" (GTFT) players.

Interestingly, the evolutionary success of Pavlov seems to depend on the absence of

unconditional (AllC) cooperators in the ecologies investigated.
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1 Introduction

Studying evolutionary dynamics on iterated prisoner’s dilemma (IPD) requires a selection

out of the vast set of the repeated game strategies. This choice turns out to be important

for the outcome of the iterated game and the level of cooperation ’evolved’. For instance,

although the Tit-For-Tat strategy was an undisputed winner of two round-robin tourna-

ments, Axelrod (1997) stresses the crucial role of the surrounding ecology of submitted

iterated rules for the success of this direct reciprocity norm. However, which strategies to

choose out of the large set of repeated PD is a question lacking a definite answer in the

literature. Kraines and Kraines (2000) define adaptive dynamics1 on the space of memory

one repeated PD strategies and show that this process selects, as long-run outcome, only

three classes of repeated rules: cooperative, alternating and defective. They also claim

that, out of the cooperative subset, the Pavlov strategy is the only one that cannot be

invaded by a strategy from the same ’cooperative’class (including TFT). Sigmund and

Brandt (2006) investigate one such ecology consisting of three strategies: unconditional

cooperators (AllC), unconditional defectors (AllD) and reactive players (TFT) and show

that Replicator Dynamics exhibits, among others, a rock-scissors-paper pattern of cyclic

behavior. However, such replicator cycles are not robust under Replicator Dynamics, as

small payoff perturbations drive all but one strategy near to extinction2.

In this paper, we contribute to the stream of work on evolution of rules in repeated

games by analyzing the repeated Prisoner’s Dilemma with a small number of simple,

memory-one strategies. In particular, we extend Sigmund and Brandt (2006) ecology with

two additional repeated strategies that seem to have received less attention in the evolu-

tionary IPD game literature: the error-proof, "generous" tit-for-tat which, with a certain

probability, re-establishes cooperation after a (possibly by mistake) defection of the op-

1Adaptive dynamics are regularly used in evolutionary biology to model evolution through natural
selection on the fitness landscape.

2mathematically, a so-called heteroclinic cycle is born, with Replicator Dynamics trajectories lingering
longer and longer near the boundary of the simplex.
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ponent and the penitent, "stimulus-response" (thus dubbed Pavlov strategy Kraines and

Kraines (1995), Sigmund and Nowak (1993a), Sigmund and Nowak (1993b)) that resets

cooperation after the opponent punished for defection. Second, we contrast Replicator

Dynamics behavior with a perturbed version of the Best-Reply dynamics, the Logit Dy-

namics, allowing for an imperfect switching towards a myopic best reply to the existing

strategies distribution. Our emphasis is on the possibility of complicated dynamics such

as multiplicity of steady states, limit cycles or chaos in the resulting dynamical system.

We start with a systematic investigation of all ten 2× 2 repeated game rules interactions

and then build-up towards more complex ecologies of 3, 4, and 5 strategies, combining the-

oretical considerations about the best-reply structure of the resulting normal form games

with numerical analysis and simulations. A bifurcation analysis with respect to various

model parameters is performed in order to reveal qualitative changes in the set of long-run

(non)cooperative behaviors. Preliminary results, in particular for the 4× 4 and 5× 5 IPD

ecologies, show that Logit Dynamics displays stable co-existence of repeated strategies

but subjected to perpetual oscillations or even chaotic patterns in the distribution of IPD

strategies.

The paper is structured as follows: Section 2 introduces the selection of iterated PD

strategies and the resulting evolutionary IPD game. The 2, 3 and 4−types ecologies are

discussed in Sections 3, 4 and 5, respectively, while Section 6 investigates, mainly via

computer simulations, the full 5 × 5 ecology. The final section is reserved for concluding

remarks and future research directions.
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2 An Evolutionary Iterated PD game

We consider a standard 2x2 Prisoner’s Dilemma stage game where players can either

cooperate (C) or defect (D). The payoff matrix of the stage game is given by:


C/D C D

C b− c, b− c −c, b

D b,−c 0, 0

 ; b > c > 0 (1)

where b stands for the benefits of cooperation and c for the costs associated with

cooperative behavior. At each time t the state of the play between two opponents is given

by an element belonging to set : Ω = {CC,CD,DC,DD}. For the iterated PD game

we restrict the choice of iterated Prisoner’s Dilemma meta-rules to a set of stochastic

memory-one strategies (see, for instance, Kraines and Kraines (2000)). Our motivation

for such a simple subset of IPD strategies resides, on the one hand, on our attempt to

model a particular form of boundedly rational players (namely limited memory agents or

forgetting effects) and, on the other hand, to obtain analytical tractability of the resulting

Markov chain. The IPD game starts with a first random move C or D and then proceeds

with playing C with probability (r, s, t, p) conditional on the realized state at time t − 1

being CC,CD,DC,DD, respectively. Deterministic strategies are particular limits in this

stochastic strategy space. In particular we focus on 5 well-known strategies:

• unconditional cooperators AllC : (1, 1, 1, 1);

• unconditional defectors AllD : (0, 0, 0, 0);

• conditional cooperators "Tit-for-Tatters" TFT : (1, 0, 1, 0);

• generous cooperators "Generous-Tit-for-Tat" GTFT : (1,m, 1, n)3;

3m stands for the probability of cooperating after the opponent defected and n is the probability of
playing cooperate after mutual defection.

4



• penitent or Pavlov players "WinStayLoseShift" WSLS : (1, 0, 0, 1).

Stochastic strategies are ε−perturbations of the deterministic ones, where ε has the

natural interpretation of a probability of mistakes or errors in implementation/execution

of the deterministic strategies. Following Kraines&Kraines (2000) the iterated Prisoner’s

Dilemma game between two stochastic players S1 = (r, s, t, p) and S2 = (x, y, z, w) leads

to a Markov chain on states CC,CD,DC,DD with transition probabilities given by:

T =



state CC CD DC DD

CC rx sz ty pw

CD r(1− x) s(1− z) t(1− y) p(1− w)

DC (1− r)x (1− s)z (1− t)y (1− p)w

DD (1− r)(1− x) (1− z)(1− s) (1− t)(1− y) (1− p)(1− w)


(2)

Each column of the matrix T in (2) contains transition probabilities to states CC, CD,

DC, DD, respectively and naturally, its entries add up to one. For instance, in the first

column, entry t11 gives the probability of next period state staying in CC : row player

S1 cooperates with probability r after the realized state was CC while column player S2

cooperates with probability x after the same realization, and thus:

t11 = prob(CC | CC) = rx.

Similarly,

t21 = prob(CD | CC) = prob(S1 cooperates after CC)× prob(S2 defects after CC)

= r × (1− prob(S2 cooperates after CC)) = r(1− x).

One can show that, for strictly positive perturbation parameters, this Markov process is

ergodic, i.e. there is positive probability of escaping from any of the states in Ω.Therefore,
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it has a stationary invariant distribution given by the eigenvector of T corresponding

to an eigenvalue 1 (Kemeny and Snell (1975)). The invariant distribution represents

the average time the play between two stochastic strategies spends in each state in Ω

and, without discounting future payoffs4, it enables computation of the average expected

payoff resulting from the interaction of two repeated game strategies (Appendix A contains

detailed calculations of the invariant distributions and average payoffs). One such average

payoff matrix is constructed below for an ecology consisting of the following stochastic

versions of the five strategies described above:

• AllC − (1− ε, 1− ε, 1− ε, 1− ε);

• AllD − (ε, ε, ε, ε);

• TFT − (1− ε, ε, 1− ε, ε);

• GTFT − (1− ε,m, 1− ε,n5);

• WSLS − (1− ε, ε, ε, 1− ε).

M =



AllD TFT GTFT WSLS AllC

AllD ε (b− c) m12 m13
1
2
b− cε b− bε− cε

TFT m21
1
2
b− 1

2
c m23

1
2
b− 1

2
c m25

GTFT m31 m32
n
n+ε

(b− c) m34 m35

WSLS bε− 1
2
c 1

2
b− 1

2
c m43 m44 b− 1

2
c− bε

AllC bε− c+ cε m52 m53 m54 (1− ε) (b− c)


(3)

4Sigmund and Brandt (2006) do allow for discounting in their 3x3 ecology of behaviors, and construct
the iterated game matrix in a diferent manner, by computing discounted sums of future payoffs, under
stochastic strategies; thus, the first move in the game becomes relevant and a repeated game strategy
must be characterized, in addition, by the probability of playing C in the first round.

5Throughout the paper we assume that the ‘generosity’probabilities n andm are an order of magnitude
higher that the probability of an error in the strategy execution ε (e.g. ε = 0.01, n = 0.1).
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where m′ijs are complicated algebraic expressions in the stage game parameters (b, c),

the errors (ε) and the ’generosity’parameters n (see Appendix A).

Players are assumed to switch their repeated game strategies based on realized, past

average performance. Thus, at time t the repeated strategy i will be played with the

logistic probability:

xi,t =
eβ(Mx)i,t−1

5∑
i=1

eβ(Mx)i,t−1

,

5∑
i=1

xi,t−1 = 1 (4)

with β denoting the responsiveness to payoff differences between alternative strategies

and xi,ts the time t fractions of ALLD, TFT,GTFT,WSLS,ALLC players in the popu-

lation, respectively. Each entry in the payoffmatrix (3) defines the long-run6 contribution

mij to the fitness of strategy Si due to a particular encounter with strategy Sj . This

long-run contribution to fitness is used first to approximate the specific performance of

strategy Si in a finitely repeated PD game and then to update the behavior for the next

IPD encounter.

In order to disentangle the rich behavior of the full 5-dimensional system (4) we start

from simple pairwise interactions and then build larger ecologies of behaviors to capture

the contribution of each type to the evolution of (non) cooperative outcomes.

3 2×2 Ecologies

In this section we discuss in more detail four out of the

 5

2

 = 10 cases of an ecology

with only two repeated strategies7. Depending on the stage game payoffmatrix paramet-

erization and of the error parameter ε, the following best-response structures emerge for

the reduced IPD game: Coordination, Hawk-Dove, Prisoner’s Dilemma and dominance

solvable games.
6 i.e. in the invariant distribution of the Markov chain
7For the complete analysis of all 10 cases we refer the reader to Chapter V in PhD thesis Ochea (2010).
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3.1 AllD vs. TFT

In a 2× 2 ecology of unconditional defectors (AllD) and reciprocators (TFT) the reduced

payoff matrix has the following form:


AllD TFT

AllD ε (b− c) −ε (c− 2b+ 2bε)

TFT ε (b− 2c+ 2cε) 1
2
b− 1

2
c

 (5)

For b > c/(1− 2ε) and ε > 0 the following inequalities hold:

ε (b− c) > ε (b− 2c+ 2cε)

1

2
b− 1

2
c > −ε (c− 2b+ 2bε)

Thus, the IPD game (5) is a Coordination game8 with two pure strategy equilibria

(AllD,AllD) and (TFT, TFT ) and, depending on the initial population mixture, the

Best-Reply limit(β → ∞) of the Logit Dynamics converges to either of them. When

implementation errors are very small (ε = 0.01), the (AllD,AllD) equilibrium basin of

attraction is much smaller compared to the other equilibrium basin. This is due to the

fact that TFT against itself performs much better that AllD against itself, as can be seen

from the payoffmatrix (5): m22 = 1/2(b−c) > m11 = ε(b−c)). It turns out that, for large

β and small ε, TFT can invade and take over the entire population, irrespective of the

initial mixture (Fig. (1), Panel (a) show time series of the fractions for highly asymmetric

starting conditions of 99% AllD and only 1% TFT ). Increasing the probability of mis-

takes ε, increases the payoff of defectors against themselves and, in the β large limit, the

system displays co-existence of stable steady states. A certain large initial critical mass

8In the ε → 0 limit TFT weakly dominates AllD and it is selected by the logit dynamics given when
the sensitivity to payoffs difference is high enough (large β). However, taking this limit is problematic as
the invariant distribution of the Markov chain is no longer unique, but history-dependent (more precisely
the long-run payoffmatrix now depends on the first move in the game). Still, for ε = 0, the payoffmatrix
could be regarded as the outcome of a particular unfolding of the game history.
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of defectors (fraction of AllD 99% and TFT 1%) can eliminate TFT with the population

ending up in a monomorphic AllD state (Fig. 1b). The multiple steady states are created

via saddle-node bifurcations: e.g. (Fig. 1cd) there is an unique interior fixed point for low

values of β(ε) but as the intensity of choice(mistake probability) reaches certain thresholds

β ≈ 140(ε ≈ 0.05) two additional steady states are created: one stable(observed in the

panels) and one unstable.
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 0.4

 0.6
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 1.2

 0  5  10 15 20 25 30 35 40 45

AllD
TFT

(a) ε = 0.01. Time series

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10 15 20 25 30 35 40 45

AllD
TFT

(b) ε = 0.05. Time series

(c) β = 200.Bifurcation diagram
(AllD, ε)

(d) ε = 0.05. Bifurcation diagram
(AllD, β)

Figure 1: Unconditional defectors (AllD) vs. Reciprocators (TFT). Different errors in
the implementation lead to different long-run steady states: a population of reciprocators
(Panel (a)) or a population of defectors (Panel (b)). Panels (c)-(d) display co-existence of
stable steady states for large values of β and ε. Remaining game parameters: b = 4, c =
1, β = 200.
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3.2 TFT vs. AllC

For an interaction between unconditional cooperators (AllC) and reciprocators (TFT ) the

payoff matrix (3) reduces to:

 TFT 1
2
(b− c) b− c− bε+ 2cε− 2cε2

AllC b− c− 2bε+ cε+ 2bε2 (1− ε) (b− c)

 (6)

It is straightforward to see that, for small ε and b > c we have:

b− c− 2bε+ cε+ 2bε2 >
1

2
(b− c)

b− c− bε+ 2cε− 2cε2 > (1− ε) (b− c)

Consequently, the reduced 2 × 2 game (6) is of Hawk-Dove type and, thus, it has three

equilibria: two asymmetric in pure strategies (TFT,AllC) and (AllC, TFT ) and one

symmetric in mixed strategies. The two asymmetric equilibria give rise to a 2-cycle under

best-reply dynamics (i.e. logit dynamics with large β) while the interior equilibrium is un-

stable. A two-cycle, with population swinging back and forth between the two asymmetric

equilibria, is created via a period-doubling bifurcation when either errors in implementa-

tion are small (Fig. 2c) or players choose a best-reply (large β, Panel(d)). The intuition

for the two-cycle relates to the best-response correspondences in the payoffmatrix above:

TFT ∈ BR{AllC}and AllC ∈ BR{TFT}. In the population game interpretation, when

everyone plays TFT (AllC) it is better to switch to AllC(TFT ). Still, the amplitude of

the cycle fluctuations varies with how responsive players are to payoff differences, with the

full-scale two-cycle observed only for large β.

For intermediated values of ε (e.g. ε ∈
(
1
4
, 1
2

)
, for the b = 2, c = 1 parameterization)

matrix (6) defines a dominance solvable (DS) game with (TFT, TFT ) as unique pure

strategy equilibrium while for large ε > 1
2
the game is still dominance solvable, but with

(AllC,AllC) the unique equilibrium. The transition from a Hawk-Dove to a Dominance
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Solvable structure in the space of 2 × 2 games is illustrated in Fig. 2ef for finite and

best-reply limit of β, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 80  82  84  86  88  90  92  94

TFT
AllC

(a) small β = 15. Time series

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 80  82  84  86  88  90  92  94

TFT
AllC

(b) large β = 220. Time series

(c) β = 15. Bifurcation diagram
(TFT, ε)

(d) ε = 0.01. Bifurcation diagram
(TFT, β)

(e) β = 15. Game transition HD-DS (f) β = 100. Game transition HD-DS-DS

Figure 2: Reciprocators(TFT) vs Unconditional Cooperators(AllC). Time series of frac-
tions of TFT and AllC players for small (Panel (a)) and large (Panel (b) intensity of choice
values, respectively. Panels (c)-(d) display a period-doubling bifurcation with respect to
ε and β, leading to a 2-cycle. Last, Panels (e)-(f) show transition from a Hawk-Dove to
Dominance Solvable pattern. Game parameters: b = 2, c = 1, ε = 0.01.
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3.3 AllD-WSLS

In this sub-case, the payoff matrix (3) reduces to :

 AllD ε (b− c) 1
2
b− cε

WSLS bε− 1
2
c (b− c) (1− 4ε3 + 6ε2 − 3ε)

 (7)

For high enough benefits of cooperation (b > b∗9), this payoffmatrix represents a Coordin-

ation game if:

ε (b− c) > bε− 1

2
c

(b− c)
(
1− 4ε3 + 6ε2 − 3ε

)
>

1

2
b− cε

In this case two pure strategy equilibria (AllD,AllD) and (WSLS,WSLS) exist. One

could notice first that, for small implementation errors ε, Pavlov fares much better against

itself than AllD does against itself ((b− c) (1− 4ε3 + 6ε2 − 3ε) > ε(b− c)). However, this

may not be enough to offset the heavy exploitation Pavlov incurs in mixed encounters

when AllD gets, on average, half from the benefits lim
ε→0

(1
2
b− cε) while WSLS pays half of

the costs lim
ε→0

(bε − 1
2
c). This situation is depicted in Fig. (3)a where the population ends

up in an all-defectors state. If, in addition to small error probabilities, the benefits of

cooperation are relatively large(b > b∗), the "own-type" interaction effect may dominate

the "cross" interaction effect and the whole population becomes entirely Pavlovian (Fig.

3b). However, this results is dependent on the initial mixture of the population as for a

given initial threshold of AllD players, population cannot turn Pavlovian, irrespective of

the relative size of the benefits accrued to cooperation b.The co-existence of two stable,

monomorphic steady states for high benefits of cooperation is documented in Fig. 3c-d

where additional fixed points emerge as the parameters of interest -β and ε respectively -

are changed. When benefits are low enough, b < b∗ the 2 × 2 game becomes dominance

9b∗ = 2c(1− 2ε+ 2ε2)/(−4ε+ 4ε2 + 1)
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solvable (DS) with (AllD,AllD) the unique equilibrium. A bifurcation diagram with

respect to the benefits of cooperation b (Fig. 3e) reveals once the threshold b∗ is passed,

a transition in the space of 2 × 2 games from a Dominance Solvable game with unique

equilibrium to a Coordination game with two equilibria.
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(a) b = 4.Initial mixture (70%, 30%)
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(b) b = 4.Initial mixture (50%, 50%)

(c) ε = 0.01. Bifurcation diagram (d) β = 200. Bifurcation diagram

(e) β = 200, ε = 0.01. Bifurcation
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AllD
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(f) b = 2. Time series

Figure 3: Unconditional defectors(AllD) vs. Pavlov(WSLS). The selected long-run mono-
morphic state, depends both on the size of the implementation errors ε and on the relative
benefit of cooperation b. Panels (c)-(d): fold bifurcations in ε, β spaces and co-existence
of steady states. Panel (e) displays the bifurcation diagram with respect to the benefit
of cooperation b and show the transition from a dominance solvable game (low b) to a
coordination game (high b). Panel (f) reports time series converging to an AllD popu-
lation as WSLS is a strictly dominated strategy for b < 2c. Baseline game parameters:
b = 4, c = 1, ε = 0.01, β = 15.
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3.4 GTFT vs. WSLS

For this pair of repeated strategies the payoff matrix (3) reduces to:

 GTFT n
n+ε

(b− c) m34

WSLS m43 (b− c) (1− 4ε3 + 6ε2 − 3ε)

 (8)

where m43 and m34 are complicated expressions of all model parameters (see Appendix

(A) for explicit formulas)). One can show, by algebraic manipulations, that for n > ε(by

assumption):

n

n+ ε
(b− c) > m43

(b− c)
(
1− 4ε3 + 6ε2 − 3ε

)
> m34

and this 2 × 2 ecology defines a Coordination game with two pure strategy, symmetric

Nash equilibria (GTFT,GTFT ) and (WSLS,WSLS). In the β large limit, the equilibria

structure of the coordination game describe the long-run behavior of the logit dynam-

ics. The corresponding basins of attraction relative sizes are significantly biased towards

Pavlov players as it takes 70% of GTFT players in the initial population in order to

converge to a log-run all GTFT state (Fig.4a), with anything below this threshold re-

versing fortunes toward a long run Pavlov monomorphic state. Intuitively, a stimulus-

response, past-performance driven strategy like Pavlov, is able to take advantage of the

generosity built into GTFT which reverts, with large probability n, to "nice" behaviour

after an opponent defection irrespective of the realized history. This is because GTFT

does not discriminate among possible causes of defection(be it after a DD, or a DC his-

tory), while Pavlov re-establishes cooperation only after own defection. For finite, small

β the population converges to a unique fixed point with co-existing behaviors of the form

(x∗GTFT , x
∗
WSLS), x∗GTFT + x∗WSLS = 1, with Pavlov outnumbering generous reciprocators(

x∗WSLS slides up in the interval [1/2, 1] as we increase β). Fig. 4c-d depict a saddle-node

15



bifurcation route towards co-existing monomorphic steady states. For low β (given n) or

small n (fixing β close to the "best-reply" limit) there is a unique polymorphic population

steady state.
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GTFT
WSLS

(a) Time series, initial mixture 70%
GTFT-30% WSLS
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GTFT
WSLS

(b) Time series, initial mixture 50%
GTFT-50% WSLS

(c), n = 0.3. Bifurcation diagram
(WSLS, β)

(d) β = 100. Bifurcation diagram
(WSLS, n)

Figure 4: Generous reciprocators (GTFT) vs. Pavlovian(WSLS). Depending on the initial
fractions in the populations, in the β large limit, the system converges to a monomorphic
state with only one type of behavior surviving. Panels (c)-(d): creation of two co-existing
steady states via a fold bifurcation when the degree of generosity/intensity of choice is
varied. Game parameters: b = 4, c = 1, ε = 0.01, n = 0.3, β = 100.
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3.5 Summary

Table 1 summarizes the normal form games resulting from 10 different the strategic pair-

wise interaction of the five repeated PD strategies together with the long-run attractors

of the corresponding evolutionary game under the perturbed best-reply dynamics. In the

limiting β → ∞ case, these long-run outcomes coincide with the attracting sets of the

unperturbed best-reply dynamics on the respective 2× 2 game.

No. 2x2 Game Bifurcation Attractors Path-
β large Dependence

2.1 AllD-TFT WDS,C SN multiple SS yes, ε = 0.05
2.2 TFT-AllC HD PD 2-cycle no
2.3 AllD-AllC DS none unique SS no
2.4 AllD-GTFT C SN multiple SS yes, ε = 0.01
2.5 AllD-WSLS DS,C SN multiple SS yes, b = 4
2.6 GTFT-AllC HD PD 2-cycle yes
2.7 GTFT-WSLS C SN multiple SS yes
2.8 TFT-GTFT DS, C PD 2-cycle no
2.9 TFT-WSLS WDS none unique SS no
2.10 WSLS-AllC DS,HD PD 2-cycle no

Table 1: Summary of the type of game and dynamical behaviour for all 10 pairwise
interaction of iterated Prisoner’s Dilemma strategies under logit dynamics.

We have encountered the following typical pairwise interactions between iterated Pris-

oner’s Dilemma strategies together with transition from one game form to another as the

payoff matrix parameters (b, c, ε, n) change:

• Coordination game (C): multiplicity of monomorphic(only one type of behaviour

surviving) steady states with strong path-dependence

• Hawk-Dove game (HD): asymmetric equilibria; 2-cycle with continuous population

switching from one monomorphic state to the other

• Prisoner’s Dilemma (PD): uniquely selected long run symmetric, Pareto-inferior,

equilibrium (i.e. monomorphic population state)
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• Dominance Solvable game (DS), non-PD : unique, monomorphic long-run steady

state

• Games with a weakly dominated strategy (WDS): unique, monomorphic long-run

steady state

The co-existing steady states and 2-cycles emerging under logit dynamics are usually

created via fold/ saddle-node (SN) and period-doubling (PD) bifurcations, respectively.

Although the qualitative changes in the space of 2 × 2 games do not make the object of

our study, some interesting game transitions were also revealed and it would be worth

studying them systematically, as future research.
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4 3×3 Ecologies

In this section we will discuss four10 out of the

 5

3

 = 10 sub-ecologies of three iterated

PD strategies, focusing the analysis on the resulting 3× 3 normal form games and on the

attracting sets and long-run behavior of the logit evolutionary dynamics.

4.1 AllD-GTFT-WSLS

The 3x3 payoff matrix reads:



AllD GTFT WSLS

AllD ε (b− c) m13
1
2
b− cε

GTFT m31
n
n+ε

(b− c) m34

WSLS bε− 1
2
c m43 (b− c) (1− 4ε3 + 6ε2 − 3ε)


(9)

Using the best-response functions for the reduced 2 × 2 games 2.4, 2.5 and 2.7 in table

(1) , and given that n > ε (by assumption), we can easily derive the best-response corres-

pondences in game form (9) as follows: {AllD} = BR{AllD}, {GTFT} = BR{GTFT}

and {WSLS} = BR{WSLS}. Thus, the game is a 3 × 3 coordination game, and, in

the best-reply limit of our logit dynamic(i.e. β → ∞) each of these three pure strategy

symmetric equilibria could be obtained as long-run outcome if the population starts out

with the appropriate distribution of fractions. See Fig.5f for a set of initial conditions from

which the (WSLS,WSLS) is selected. For β finite, the situation becomes more intricate

as the Logit dynamics appear to break the typical coordination game best-response struc-

ture described above and generate Rock-Paper-Scissors patterns of cyclical oscillations

irrespective of the initial mixture of the population (Fig.5a-d).

As the bifurcation diagram with respect to β (Fig.5e) suggests, a unique, fully mixed

10The reader is referred to the corresponding chapter in Ochea (2010) for the complete analysis of the
remaining 6 ecologies of repeated rules.
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steady state for low values, destabilizes, for moderate values of the intensity of choice, via

a Neimark-Sacker (NS) bifurcation, and RSP-like stable, limit cycles appear. For high

values of β a sequence of saddle-node (SN) bifurcations occurs, conducing to three11 co-

existing stable steady states, in the β → ∞ limit. This bifurcation scenario is confirmed

in Fig. 6 where we continue a barycentrical fixed point (1/3, 1/3, 1/3)) in the benefit

of cooperation/error in strategy execution space (top panels) and detect the conjectured

Neimark-Sacker (NS)-Period-Doubling (PD)-Saddle-Node (LP) sequence of bifurcations

along the equilibrium curve. The middle and bottom panels of Fig. 6 ‘continue’ each

detected codimension I singularity with respect to another game or behavioral parameter

and displays the resulting bifurcation curves .When a NS/PD/LP curve of codimension

I bifurcations is crossed from below a limit cycle/2-cycle/co-existing stable and unstable

steady states emerge, respectively. Also, it is worthwhile pointing out the rich selection

of codimension II bifurcations occurring along the curves of codimension I bifurcations in

this 3x3 ecology of repeated Prisoner’s Dilemma rules under the Logit Dynamics.

The intuition for the emergence, within a Coordination game, of the Rock-Paper-

Scissors cycles "GTFT beats AllD, WSLS beats GTFT and AllD beats WSLS" is not

immediately clear. We know that in the β → ∞ limit the interaction is of Coordination

game type with the three co-existing stable steady states created via a sequence of saddle-

node bifurcations as shown before. Still, for finite values of the intensity of choice β

(Fig.5e) the typical Coordination game (each strategy Ei is a best-reply to itself) behaves

dynamically as if a RSP game (each strategy Ei is a best reply to its successor Ei+1).

Nevertheless, even for finite β the Coordination game dynamic behavior can be recovered

if the benefits accrued to cooperation b are high enough (Fig.5a).

11Panel (e) displays, for large β only two values of Pavlov fractions steady states, the top one with 100%
share of WSLS and the bottom one with 0%. The third steady state supersedes the bottom curve, with
zero WSLS fraction, too.
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(a) β = 15. Bifurcation diagram, b (b) β = 15. Bifurcation diagram, ε

(c) b = 2.16.Phase plot
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(d) b = 2.16. Time series

(e) b = 2.2. Bifurcation diagram
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Figure 5: AllD vs. GTFT vs. WSLS. Bifurcation diagrams with respect to the benefit of
cooperation parameter b (Panel (a)) and probability of mistakes (Panel (b)). Phase plots
in GTFT-WSLS space (Panel (c)) and time series (Panel (d)), displaying Rock-Paper-
Scissors type of long-run behaviour for moderate β. Bifurcation diagram with respect to
β and time series (Panel (f)) showing convergence, in the β large limit to the all Pavlov
steady state(for an approapriate initial population mixture). Baseline game parameters:
b = 2, c = 1, ε = 0.01, n = 0.1, β = 15.
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Figure 6: AllD vs. GTFT vs. WSLS. Top panels: continuation of an equilibrium in the be-
nefit of cooperation and error probability space. Middle and bottom panels: continuation
of the Period-Doubling (PD), Saddle-Node (LP) and Neimark-Sacker (NS) singularities
detected in the top two panels with respect to a second parameter: intensity of choice β,
degree of generosity n, benefit of cooperation b and error in implementation ε. Baseline
game parameters: b = 2, c = 1, ε = 0.01, n = 0.1, β = 15.
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4.2 AllD-GTFT-AllC

This ecology is a generalization of the one investigated thouroughly in Sigmund and Brandt

(2006) under Replicator Dynamics12. The restriction of the full payoff matrix (3) to this

3 × 3 sub-ecology, can be arranged, after the normalization of diagonal payoffs into the

following form:



AllD GTFT AllC

AllD 0 − 1
n+ε

(n− ε2 − nε) (b− c− bn− bε) c (1− 2ε)

GTFT −c (n− ε2 − nε) 0 cε (1− n− ε)

AllC −c (1− 2ε) ε
n+ε

(1− n− ε) (b− c− bn− bε) 0


(10)

It is easy to see that, for ε, n → 0 this normalized payoff matrix has a generalized

Rock-Paper-Scissors structure, i.e. AllD outcompetes AllC, AllC outcompetes GTFT

and GTFT outcompetes AllD. In this case the logit dynamics has a limit cycle as an

attracting set for moderate β and a three cycle with perpetual switching between the

three monomorphic steady states in the β large limit. For strictly positive perturbations

ε, n the game is not RSP per se but, nevertheless, the Logit Dynamics generates, for

low to intermediate values of the intensity of choice, periodic behavior resembling the

described RSP cycles. Reasoning for the emergence of such limit cycles in Fig. 7c-d goes

along the best-reply correspondences of the reduced 3x3 game 4.1 in table (2). Unlike the

AllD−TFT −AllC ecology, the shape of the curve, as well as the oscillations bounds, are

distorted, with the original ones recovered in the limit n→ ε when GTFT approaches the

TFT strategy. However, in the β → ∞ limit system converges to a monomorphic AllD

state (Fig. 7e-f). The presence of undiscriminating cooperators leads to the extinction of

the generous reciprocators.

12Sigmund and Brandt (2006) also discover, when mistakes probability ε → 0, a RSP pattern under
Replicator Dynamics, for a similar ecology of IPD game rules, with discounting.
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(a) n = 0.2̇. Bifurcation diagram (b) ε = 0.01. Bifurcation diagram

(c) b = 1.72. Phase plot
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(d) b = 1.72. Time series

(e) ε = 0.01. Bifurcation diagram
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(f) β = 100. Time series

Figure 7: AllD vs. GTFT vs. AllC. Bifurcation diagrams with respect to the benefit of
cooperation parameter b (Panel (a)) and degree of generosity n (Panel (b)). Phase plots
in AllC-GTFT space together with Rock-Paper-Scissors time series are reported in Panels
(c) and (d), respectively. Panels (e),(f) display the long run behaviour in the β large limit.
Baseline game parameters: b = 2, c = 1, ε = 0.01, n = 0.1, β = 15,

24



4.3 AllD-TFT-WSLS

The payoff matrix for this sub-ecology takes the following form:



AllD TFT WSLS

0
(
1
2
− ε
)

(c− b+ 2bε)
(
ε− 1

2

)
(b− 2c− 4bε+ 4cε+ 4bε2 − 4cε2)

cε (2ε− 1) 0 1
2

(b− c) (2ε− 1)3

c
(
ε− 1

2

)
0 0


(11)

which, in the limit ε→ 0, simplifies to:



AllD TFT WSLS

0 −1
2
(b− c) c− 1

2
b

0 0 −1
2
(b− c)

−1
2
c 0 0


For relatively small benefits of cooperation (c < b ≤ 2c) we see that AllD loses

to TFT (
(
1
2
− ε
)

(c− b+ 2bε) < 0). Unconditional defectors AllD win against WSLS

(
(
ε− 1

2

)
(b− 2c− 4bε+ 4cε+ 4bε2 − 4cε2) > 0) and tie against own-type. Thus, this mat-

rix has a degenerate generalized Rock-Paper-Scissors structure and limit cycles are born

via a Hopf bifurcation, for low13 to moderate values of the intensity of choice parameter

β (Fig. 8a-d) with a 3-cycle arising in the β → ∞ limit. For strictly positive mistake

probability ε there are still RPS cycles born, but only for moderate values of the intensity

of choice, while, for large intensity of choice, the population ends up in an AllD mono-

morphism (Panel(e)). The intuition for these oscillations could be extracted from the

best-response structure of the corresponding pairwise interactions 2.1, 2.5 and 2.9 in table

(1): for small errors of implementation TFT weakly dominates AllD, in turn, is it weakly

dominated by WSLS and, finally, AllD easily invades a Pavlovian population when be-

13If β = 0, the repeated strategy choice is random and the unique steady state is the fully mixed
population state.
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nefits accrued to cooperation are small (see Fig. 3a). For strictly positive ε and β → ∞

the population converges to an AllD monomorphic state.

If the relative benefits are large (b > 2c), the RSP structure disappears for ε→ 0, and,

for β large the population converges, irrespective of the initial mixture, to a Pavlov-only

state (Panel (f)). Notice that, even if the underlying game itself is no longer RSP, there

are still oscillations for moderate β due to the evolutionary dynamics.
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(a) n = 0.2. Bifurcation diagram, b (b) n = 0.2. Bifurcation diagram, ε

(c) b = 2.16. Phase plot
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(d) b = 2.16.Time series

(e) b ≤ 2ċ. Bifurcation diagram (f) b > 2ċ. Bifurcation diagram

Figure 8: AllD vs. TFT vs. WSLS. Bifurcation diagrams with respect to the benefit of
cooperation parameter b (Panel (a)) and probability of mistakes (Panel (b)). Phase plots
in AllD-WSLS (Panel (c)) and time series (Panel (d)) displaying Rock-Paper-Scissors type
of long-run behaviour. Panels (e)-(f) show long-run behavior and convergence, for large
β, to AllD (Pavlov) monomorphism for b < 2c (b > 2c, respectively). Baseline game
parameters: b = 2, c = 1, ε = 0.01, n = 0.2, β = 15,
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4.4 AllD-WSLS-AllC

The reduced 3 × 3 payoff matrix for an ecology of defective, stimulus-response and co-

operative players takes the following form:



AllD WSLS AllC

AllD ε (b− c) 1
2
b− cε b− bε− cε

WSLS bε− 1
2
c (b− c) (1− 4ε3 + 6ε2 − 3ε) b− 1

2
c− bε

AllC bε− c+ cε b− c− 2bε+ cε+ 2bε2 (1− ε) (b− c)


(12)

We notice first, that AllC is strictly dominated by WSLS provided that b < 2c 1−ε
1−2ε ,

the necessary and suffi cient condition for Pavlov to be a best-reply to itself. In this case the

equilibria structure is given by the equilibria of the AllD vs. WSLS game - (AllD,AllD)

and (WSLS,WSLS) - in reduced game form 2.5. But, in the limit ε → 0, the ecology

AllD − WSLS was dominance solvable for b < 2ċ with WSLS the strictly dominated

strategy. Combining the two restrictions, we obtain (AllD,AllD) as the only remaining

Nash equilibrium in our 3x3 ecology for small benefits of cooperation b < 2c.

If b > 2c 1−ε
1−2ε , then AllC is a best-reply to WSLS, but WSLS is not a best reply to

AllC (as b− bε− cε > b− 1
2
c− bε) so both the Coordination and the Hawk-Dove patterns

of the AllD−WSLS and WSLS −AllC ecologies (see restricted game 2.10) are broken.

Again we are only left with (AllD,AllD) as the unique pure strategy equilibrium.(Fig.

9a). We observe the same phenomenon as with the AllD − GFTF − AllC ecology, i.e.

the presence of undiscriminating players AllC leads to the extinction of the discriminating

type Pavlov.

Interestingly, if we relax the β → ∞ assumption, the logit dynamics easily gener-

ates periodic (Fig. 9b-c) or chaotic behavior with irregular switching between the three

strategies. Fig. (9d) shows a plot of the largest Lyapunov exponent λ, with λ > 0 implying

chaos. In this case complicated dynamics arises through a period-doubling route to chaos.

28



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20

AllD
WSLS
AllC

(a) b > 2c, β = 300. Time series

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 100  105  110  115  120

AllD
WSLS
AllC

(b) b > 2c, β = 30. Time series

(c) β = 30. Bifurcation diagram

1
0.8
0.6
0.4
0.2

 0
 0.2
 0.4
 0.6

 3.5  4  4.5  5  5.5  6

L
y
a
p
u
n
o
v
 
e
x
p
.

b
(d) β = 30.Largest Lyapunov exponent

(e) b = 4.4. Bifurcation diagram

1

0.5

 0

 0.5

 1

 20  25  30  35  40

L
y
a
p
u
n
o
v
 
e
x
p
.

β
(f) b = 4.4. Largest Lyapunov exponent

Figure 9: AllD vs. WSLS vs. AllC. Time series evolution for small and high values of β
(Panels (a)-(b). Bifurcation diagram with respect to the benefit of cooperation b (intensity
of choice β) and evidence for chaotic behavior in Panels (c)-(d) and (e)-(f), respectively.
Game parameters: b = 4, c = 1, ε = 0.01, n = 0.3.
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4.5 Summary

Table 2 summarizes the qualitative long-run behavior of logit dynamics on various 3 × 3

sub-ecologies of PD repeated strategies. There are two basic routes to periodic behavior:

the first one is the limiting case ε→ 0 when five out of the ten normal form games unveil

a (degenerate) generalized Rock-Paper-Scissors structure. The Logit Dynamics on this

generalized RSP game gives rise to stable limit cycles created via a supercritical Neimark-

Sacker(Hopf) bifurcation with the three monomorphisms connected via a 3-cyle in the

β →∞ best-reply limit. In the second route to oscillating behavior, when we maintain the

strictly positive error parameter ε, the game forms are not of RPS type, but, nevertheless,

for moderate values of the intensity of choice stable oscillations created via a supercritical

NS bifurcation are observed. However, for such non-RPS games, in the limiting case

β →∞, the cyclical structure disappears with one of the strict equilibria selected as the

long run outcome.

A somewhat different scenario occurs for the AllD−GTFT−WSLS 3×3 coordination

game, where a sequence of Neimark-Sacker and Fold bifurcations unfolds as the intensity

of choice slides from low to high values: the long-run behavior varies from a unique

polymorphic steady state for low β, through limit cycles to three co-existing steady states

corresponding to the underlying game Nash equilibria in the best-reply limit.

In the transition to the AllC ecologies, in the second half of the table, we have found

one 3× 3 example of chaotic dynamics created through a period-doubling route to chaos.

Chaos appeared for finite intensity of choice β, in the AllD−Pavlov−AllC ecology, whose

underlying payoff matrix has a non-RSP structure even for the limiting case ε → 0. The

typical RSP cyclical dominance structures seem to preclude the onset of chaos.

In the last four ecologies in Table 2 with no defectors (AllD), the long-run, β → ∞

outcomes consist, generally, of simple behavior, steady states or 2-cycle with continuous

population swings between one monomorphic state to another, with the third strategy
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extinct from the population.

No. 3×3 Bifurcation Attractors
moderate β β →∞

3.1 AllD-TFT-AllC NS limit cycle 3-cycle
3.2 AllD-GTFT-WSLS NS,LP limit cycle 3 steady states
3.3 AllD-GTFT-AllC NS limit cycle 1 steady state (AllD)
3.4 AllD-TFT-WSLS NS limit cycle 1 steady state (Pavlov)
3.5 AllD-TFT-GTFT NS limit cycle 1 steady state (GTFT)
3.6 AllD-WSLS-AllC PD 2-cycle, chaos 1 steady state (AllD)
3.7 TFT-WSLS-AllC PD 2-cycle stable steady state
3.8 TFT-GTFT-WSLS PD 2-cycle 2 steady states
3.9 GTFT-WSLS-AllC PD 2-cycle 2-cycle
3.10 TFT-GTFT-AllC PD 2-cycle 2-cycle

Table 2: Summary of the dynamical behaviour for all 10 3x3 interaction of iterated Pris-
oner’s Dilemma strategies under logit dynamics.

5 4×4 ecologies

Before studying the full 5× 5 ecology, in this section we discuss the long-run behavior of

typical 4-types interactions under the Logit Dynamics.

5.1 No TFT

This ecology appends the AllD −GTFT −WSLS subset (subsection (4.1)) with uncon-

ditional cooperators. In the β large limit, AllC destroys the Coordination game structure

of AllD − GTFT − WSLS and the population converges to an AllD monomorphism,

irrespective of the initial conditions (Fig. 10a). This is due, on the one hand, to the Hawk-

Dove nature of the WSLS−AllC and GTFT −AllC interactions-which breaks the best-

response correspondences in (4.1) {WSLS} = BR{WSLS} and GTFT = BR{GTFT} -

and, on the other hand, to the unconditional defectors AllD "easiness" of invading undis-

criminating cooperators AllC relative toWSLS andGTFT . Briefly, adding "cooperative"

players leads to the extinction of the two discriminating types (GTFT and WSLS) and,
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consequently, the overall level of long-run cooperation drops. However, for moderate β,

Pavlov seems to be favoured by the evolutionary dynamics14 (see Panel (e) for the evolu-

tion of an initially balanced population) and rich dynamics of the WSLS fraction unfold

if either the mistake probability (ε) or the intensity of choice is altered (Fig. 10b-c).

Co-existence of attractors - one chaotic (Panel (d) plots the largest Lyapunov exponent

as numerical evidence for chaos) and an AllD monomorphic steady state - is detected for

intermediate values of β while the entire population becomes AllD for large values of the

intensity of choice. Panels (e)-(f) show plots of fractions evolution on the two attractors:

a fully mixed population converges to the chaotic attractor (Panel (e)) while a popula-

tion with no reciprocators (Panel (f)) ends up in a defectors AllD only state. This also

illustrates the critical role TFT players have in the emergence and success of Pavlovian

(WSLS) types.

14Also, from subsection (3.4) (WSLS,WSLS) equilibrium is more likely to emerge because of a larger
basin of attraction compared to (GTFT,GTFT ); still this dependence of initial distribution (even though
basins are largely asymmetric) seems to be lost once we investigate the enlarged, no-TFT ecology.
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Figure 10: AllD vs. GTFT vs. WSLS vs. AllC. Evolution towards an AllD population
for β large limit. Panels (b)-(c) plot bifurcation diagrams with respect to the error in
strategy implementation ε and intensity of choice β parameters, while numerical evidence,
i.e. positive Lyapunov exponent, for chaos in Panel (d). Last, evolution of fractions on
the two co-existing attractors, for the boundedly rational choice, is displayed in Panels (e)
and (f). Baseline game parameters: b = 3, c = 1, ε = 0.01, n = 0.3.
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5.2 No GTFT

Unlike the previous case, the 4 × 4 ecology without GTFT 15 exhibits path-dependence.

Hence, for moderate values of the intensity of choice β ≈ 27, the system displays co-

existence of attractors. Depending on the initial population mix, the long-run evolution-

ary outcome can be either the cyclical competition between AllD, TFT and AllC with

asymmetric amplitudes (time series Fig. 11b) as in subsection (??), or a 1-piece chaotic

attractor (time series in Fig. 11c) with Pavlov having a dominant position, as in, for

instance, subsection (4.4). In both cases, the other strategies remain present in the popu-

lation, but in small numbers.

For high values of β the path-dependence is lost, the only remaining attractor be-

ing a full-ranged Rock-Paper-Scissors 3-cycle (Panel (d)) in AllD, TFT and AllC, with

stimulus-response players WSLS going extinct. The bifurcation diagram in Panel (a) or-

ganizes the long-run outcomes of this ecology and displays the two co-existing attractors:

the chaotic one in the top and the cyclical one in the bottom curves.

15Imhof et al. (2007) also discuss, in a finite population framework, an ecology of AllD, TFT,WSLS
and AllC behaviors, under the frequency-dependent, mutation-selection Moran process. They show that
AllD is selected for stage game payoffs (i.e. b/c ratio) below a certain threshold, while WSLS wins the
evolutionary competition otherwise.
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(a) b = 4.Bifurcation diagram showing
co-existence of attractors
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Figure 11: AllD vs. TFT vs. WSLS vs. AllC. Panel (a) bifurcation diagram of Pavlov
fractions with respect to the intensity of choice parameter; Panels (b)-(c): depending
on initial distribution of fractions the long-run population state may be either ongoing
oscillations among AllD, TFT, AllC(Panel (b)) or co-existence, although in a possibly
chaotic fashion, of WSLS and AllC players withWSLS largely outnumbering unconditional
cooperators (Panel (c)). Last, Panel (d) displays the large β limit of the long-run dynamics
of fractions. Remaining game parameters: b = 4, c = 1, ε = 0.01, n = 0.3.

5.3 No WSLS

With the stimulus-response WSLS rule put aside, the evolutionary dynamics becomes

very complicated. In the β large limit, co-existence of the four strategies in a cyclical
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fashion, is observed for high benefits of cooperation b (Fig. 12a) while, for low benefits

b, GTFT is driven extinct and full-scale cyclical dynamics with the remaining three

strategies emerge (Panel (b)).

For finite β, a stable limit cycle is born via a Neimark-Sacker bifurcation (Fig. 12a)

for small b, while a period-doubling route to chaos emerges for high benefits accrued to

cooperation (Panel (d)). Finally, in Fig. 12e a period-doubling route to chaos is depicted

(positive Lyapunov exponent plot in Panel (f)) as the generosity parameter n built into

the GTFT strategy is fine-tuned.
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(f) β = 15. Largest Lyapunov exponent

Figure 12: AllD vs. TFT vs. GTFT vs. AllC. Time series of the corresponding fractions,
for large β, and large/small benefit of cooperation (Panel (a) and (b), respectively) .
Bifurcatins diagrams for high and low b are also shown in Panel (c)-(d). Last, Panel
(e) displays a bifurcation diagram of GTFT fraction with respect to the "generosity"
parameter n while Panel (f) shows some numerical evidence for chaos. Remaining game
parameters: c = 1, ε = 0.01, n = 0.3.

37



5.4 No AllC

There are two cases to be distinguished for an AllD − TFT − GTFT −WSLS ecology.

These two situations emerge from the discussion of the corresponding 3× 3 sub-ecologies

(see subsections (4.1), (4.3) and (??), namely low (b ≤ 2c) and high benefits of cooperation

(b > 2c).

For low b ≤ 2c and in the β →∞ limit, the system converges to a unique monomorphic

GTFT state (Fig. 13a). However, all four behavioral rules co-exist, either in the cyclical

(Panel (a) or even chaotic (Panels (b)-(d)) manner, for intermediate values of the intensity

of choice.

As the responsiveness to payoffs differentials increases, quasi-periodic behavior emerges

through a Neimark-Sacker bifurcation, which, if β is pushed even further, breaks into a

chaotic attractor (see Fig. 13b for a plot of the positive largest Lyapunov exponent). The

strange attractor depicted in Panel (d) emerges via one such Neimark-Sacker, "breaking

of the invariant circle" route to chaos.

When benefits of cooperation are relative large (b > 2c) there is path-dependence

producing the co-existence of two monomorphisms GTFT andWSLS, respectively. Panel

(e) shows, for b = 4, the bifurcation diagram of GTFT fraction with respect to β and we

can see the two steady states created for large responsiveness to payoff differences(at the

top and bottom of the panel). For instance, an initial fractions distribution biased towards

Pavlov converges to a Pavlov-only state (Panel (f)). Alternatively, an even set of initial

conditions favors the GTFT as the long-run, good-fated type of behavior.
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(a) b = 2. Bifurcation (β,GTFT )
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(b) b = 2. Lyapunov exponent
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(c) b = 2, β = 18. Time series (d) b = 2, β = 17.6. Strange attractor

(e) b = 4. Bifurcation diagram
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Figure 13: AllD vs. TFT vs. GTFT vs. WSLS. Panels (a): bifurcation diagram with
respect to the intensity of choice showing quasi-periodic behavior. Panels (c)-(d): time
series, phase portraint and Lyapunov exponent plot as numerical evidence for chaotic
time series when the intensity of choice β increases. Finally, Panels (e)-(f) show the
long-run behavior, in the best-reply limit, for large benefits of cooperation: this is, co-
existence of monomorphic GTFT and Pavlov WSLS states. Baseline game parameters:
c = 1, ε = 0.01, n = 0.3.

39



5.5 Summary

Table 3 summarizes the long-run behavior of all 4 × 4 ecologies both the best-reply (β

large) and in the boundedly rational (β small) choice cases. In comparison to the 3 × 3

ecologies reviewed in the previous section, having more strategies not only enlarges the set

of possible outcomes but also makes the behavior much more complicated. In particular

there is now strong path-dependence in most of the ecologies, leading to the co-existence

of complicated attractors, periodic and chaotic ones. We identified two routes to complex

dynamics in these 4× 4 ecologies: the period-doubling and breaking of the invariant circle

route to chaos. However, the path dependence is lost for some ecologies (reduced 4x4

games 4.1, 4.2 and 4.3 in table (3)) when β approaches the "full rationality" limit. WSLS

fares well in an AllD environment with no AllC players, but poorly, almost going extinct,

in an AllCenvironment with AllD strategists around.

No. 4x4 Bifurcations Attractors
small β large β

4.1 No AllD PD 2-cycle 2-cycle/unique SS
4.2 No TFT PD, NS co-existence SS and chaos unique SS (AllD)
4.3 No GTFT PD, NS co-existence RSP and chaos unique SS (AllD)
4.4 No WSLS NS limit cycles, chaos 4-cycle
4.5 No AllC NS, PD limit cycles, chaos multiple SS

Table 3: Summary of the dynamical behaviour for all 4x4 interaction of iterated Prisoner’s
Dilemma strategies under logit dynamics.
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6 5×5 Ecology

In this section, we report simulations about the behavior of Logit Dynamics on the full

5×5 ecology AllD−TFT −GTFT −WSLS−AllC that generated the game matrix (3).

Depending on the relative size of cooperation benefits we distinguish again two situations.

First, for small benefits, b ≤ 2c there is co-existence of all five strategies, albeit in

a fluctuating manner, for low responsiveness to payoffs differences (Fig. 14a). When β

reaches the best-response limit the long-run outcome is an AllD-TFT -AllC 3-cycle (Fig.

14b).

If the benefits of cooperation are large, Pavlov wins the evolutionary competition for

small β (Panel (c)) but goes extinct in the β →∞ limit, with a 4-cycle in the remaining

strategies as long run behavior (Panel (d)). Last, Panels (e), (f) display bifurcation dia-

grams of AllC and Pavlov fractions respectively with respect to the intensity of choice. It

is apparent from the AllC bifurcation diagram in Panel (e) that an initially stable steady

state for very low β, destabilizes for moderate values, with continuous swings between high

and low fractions emerging for large β. As far as Pavlov is concerned the corresponding

bifurcation diagram shows its way to extinction when players choose a best-reply (Fig.

14f) .

The chaotic patterns in the two diagrams for intermediate values of β are confirmed in

Fig. 15a-f that displays two dimensional projections of a chaotic attractor together with

the fractions evolution on the attractor for b = 2.4805 and β = 15. Finally, Fig. 16c-d

illustrates the "breaking of an invariant circle" route to chaos: a quasiperiodic attractor for

β = 0.05 breaks into a 6-piece quasi-periodic and then chaotic attractor (Panels (d)-(e))

at β ≈ 10.05 and β = 10.2. Eventually these pieces join together to form a 1-piece strange

attractor (Fig. 16f) when the intensity of choice β reaches the threshold β = 10.8.

41



 0

 0.2

 0.4

 0.6

 0.8

 1

 50  52  54  56  58  60

AllD
TFT

GTFT
WSLS
AllC

(a) b = 2, β = 15. Time series

 0
 0.2
 0.4
 0.6
 0.8

 1

 20  22  24  26  28  30

AllD
TFT

GTFT
WSLS
AllC

(b) b = 2, β = 300. Time series
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(c) b = 4, β = 15. Time series
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(d) b = 4, β = 150. Time series

(e) b = 4. Bifurcation diagram (f) b = 4. Bifurcation diagram

Figure 14: AllD vs. TFT vs. GTFT vs. WSLS vs. AllC. Panels (a)-(b) show the long-run
outcome for low benefits of cooperation b in the β low and high limit, respectively. Similar
time series are displayed in Panels (c)-(d) for the high benefit b case. Panels (e)-(f) show,
for high b, bifurcation diagrams of AllC and Pavlov fractions. Baseline game parameters:
c = 1, ε = 0.01, n = 0.3.
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(a) b = 2.48, β = 15. Strange attractor (b) b = 2.48, β = 15. Strange attractor

(c) b = 2.48, β = 15. Strange attractor (d) b = 2.48, β = 15. Strange attractor
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(f) b = 2.48, β = 15. Time series

Figure 15: AllD vs. TFT vs. GTFT vs. WSLS vs. AllC. Panels (a)-(d): two-dimensional
projections of a strange attractor for b = 2.4805 and β = 15. Panels (e)-(f) evolution of
fractions on the strange attractor. Remaining game parameters: c = 1, ε = 0.01, n = 0.3.

43



(a) b = 2.48. Bifurcation diagram β
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(b) b = 2.48.Lyapunov exponent

(c) β = 9.05. 1-piece attractor (d) β = 10.05. 6-piece quasiperiodic

(e) β = 10.2. 6-piece chaotic (e) β = 10.8. 1-piece chaotic

Figure 16: AllD vs. TFT vs. GTFT vs. WSLS vs. AllC. Panels (a)-(b): bifurcation
diagram with respect to intensity of choice β and numerical evidence of chaos (plot of the
largest Lyapunov exponent). Panels (c)-(f) show the evolution of a quasiperiodic attractor
into a strange attractor as the intensity of choice increases. Remaining game parameters:
b = 2.48, c = 1, ε = 0.01, n = 0.3.
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6.1 Numerical Bifurcation Curves

The visual analysis of the bifurcation diagram in Fig. 14 can be confirmed by a rigor-

ous continuation procedure, i.e. the computation of curves of equilibria along with their

detected codimension I bifurcations as one parameter is varied using the Cl_Matcont

bifurcation software package16 (Dhooge et al. (2003)).

One such fixed point - (0.4972065; 0.4178546; 0.06911757; 0.01521537; 0.01521537) for

the game parameterization b = 1.1; c = 1; ε = 0.01;n = 0.3; β = 14- is continued in Fig. 17

top left panel, as the benefit of cooperation b is increased. Three singularities are detected

by the continuation package in the meaningful region [b > c = 1] of b : two Neimark-Sacker

(NS) points at b = 1.270046 and b = 2.63647617 and one Period-Doubling (PD) point at

b = 3.158022. These two points are next ’continued’with respect to another parameter as

depicted with codimension II singularities18 detected along them. The bifurcation curves

describe in a systematic way the qualitative changes in the behavior of the dynamical

system in a certain parameters space. For instance, in the two bottom panels in Fig. 17

the plotted curves of Neimark-Sacker singularities partition the parameters space in regions

with qualitatively similar behavior: when crossing a NS curve from below the system loses

stability of the steady state and a stable limit cycles arises around the unstable steady

state. Such an analysis reveals that the behavior envisaged by simulations is robust to

perturbations of the repeated Prisoner’s Dilemma game (as parametrized by the b/c ratio),

the probability of mistake in implementing a particular strategy ε, and the generosity

parameter n. Note that, compared to the 3 × 3 ecologies, there is no fold bifurcation

as coordination on equilibria is more diffi cult to achieve with more strategies. Instead,

increasing the strategy space generates oscillatory behavior more easily.

16Cl_Matcont for maps, see package documentation at http://www.matcont.ugent.be/
17normal form coeffi cients are -2.741700 and -5.440686 meaning that the NS bifurcations are supercrit-

ical, i.e. the limit cycles are born stable.
18e.g. a Chenciner CH codim II bifurcation gives rise to much more complicated patterns of

behavior (see Kuznetsov (1995) pp. 482).
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Figure 17: AllD vs. TFT vs. GTFT vs. WSLS vs. AllC. Top left Panel continues a numer-
ically computed fixed point, in the benefit of cooperation space. Detected codimension I
singularities are then continued with respect to another game/behavioral parameter. The
resulting curves of Period-Doubling (PD) and Neimark-Sacker (NS) points, with respect
to the intensity of choice β, probability of error in strategy execution ε, and degree of
generosity n, are plotted in the top-right, middle and bottom panels, respectively. The
occurrence of codimension II singularities can be observed along all these curves. Unless
free to float, game parameters set to: b = 2, c = 1, ε = 0.01, n = 0.3, β = 15
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7 Conclusions

In an evolutionary set-up, we append an ecology of iterated Prisoner’s Dilemma (IPD)

game strategies, consisting of unconditional cooperators (AllC), unconditional defectors

(AllD) and reactive players (TFT ) with two repeated strategies that have received less

attention in the evolutionary IPD game literature, the error-proof, "generous" tit-for-tat

(GTFT ) which, with a certain probability, re-establishes cooperation after a (possibly

by mistake) defection of the opponent and the penitent, "stimulus-response" (WSLS)

strategy that resets cooperation after the opponent punished for defection. Stable oscil-

lations in the frequency of both the forgiving (GTFT ) and repentant (Pavlov) strategy

along with chaotic behavior emerge under a perturbed version of best-response dynamics,

the logit dynamics. We have performed a detailed analysis of the relatively simple 2 × 2

and 3× 3 case with the dynamic behaviour now fairly well understood. However, the en-

larged 4×4 and 5×5 exhibit complicated behavior via period-doubling and breaking of an

invariant circle routes to chaos. Finite intensity of choice β leads to rich dynamics, path-

dependence and co-existence of cyclical and chaotic attractors for a wide selection of 4× 4

ecologies. If we turn to the best-reply limit of the logit dynamics, various 3−and 4−cycles

are exhibited in specific 4 × 4 and in the 5 × 5 ecologies. Last, in terms of individual

strategies performance, we discovered first that the presence of unconditional cooperators

turns out detrimental to the discriminating types (TFT , GTFT andWSLS) in some 4x4

interactions leading the population to an AllD monomorphism. Second, there is mixed

evidence for a Pavlovian meta-rule in an evolutionary repeated PD with a population of

rational players: on the one hand, the stimulus-response strategy does very well and wins

the evolutionary competition in a 4 × 4 environment with hard defectors (AllD) but no

undiscriminating cooperators(AllC), but it almost goes extinct in the full 5× 5 repeated

game. Nevertheless, with boundedly rational players, the fractions of Pavlov maintain

high values even within the complete ecology of five rules.
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A Iterated Prisoner’s Dilemma: stationary distribu-

tions and average payoffs

For each pairwise interaction of the iterated PD strategies Si×Sj, the stationary distribu-

tion Ω = {τCC , τCD, τDC , τDD} gives the average fraction of time system spends in each

of the four states CC,CD,DC,DD, respectively. Average expected payoffs are computed

as weighted average of the stage game matrix payoffs with weights obtained from the

stationary distribution:

πi(Si,Sj) =



b− c

−c

b

0



T 

τCC

τCD

τDC

τDD


i, j ∈ {AllD, TFT,GTFT,WSLS,AllC}

Using the transition probability matrix (2) we can derive the stationary distribution

together with the respective average expected payoffs as summarized in the following table

(some expression mij are too long and given at the end of the table):
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Interaction Stationary Distribution Average Payoff19

AllD vs. A llD

ε2

−ε (ε− 1)

−ε (ε− 1)

(ε− 1)2

m11 = ε (b− c)

AllD vs TFT

−2ε2 (ε− 1)

2ε3 − 2ε2 + ε

2ε (ε− 1)2

−2ε3 + 4ε2 − 3ε+ 1

m12 = −ε (c− 2b+ 2bε)

AllD vs GFT

ε(1−ε)(n+ε)
n−m+mε−nε+1

ε mε−ε−m+ε
2+1

n−m+mε−nε+1

(ε−1)2(n+ε)
n−m+mε−nε+1

(1−ε)(mε−ε−m+ε2+1)
n−m+mε−nε+1

m13

AllD vs WSLS

1
2
ε

1
2
ε

1
2
− 1

2
ε

1
2
− 1

2
ε

m14 = 1
2
b− cε

AllD vs A llC

−ε (ε− 1)

ε2

(ε− 1)2

−ε (ε− 1)

m15 = b− bε− cε

19Stationary distributions are valid for the general formulation of GTFT−(1,m, 1, n). However, expres-
sions for the average payoffs become very complicated and are therefore computed under the restriction
m = n in the general form of GTFT, with the impact of the asymmetry (m 6= n) in the two probabilities
of restoring cooperation (i.e. after a CD or DD history) left for further research.
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Interaction Stationary Distribution Payoffs

TFT vs A llD

−2ε2 (ε− 1)

2ε (ε− 1)2

2ε3 − 2ε2 + ε

−2ε3 + 4ε2 − 3ε+ 1

m21

TFT vs TFT

1/4

1/4

1/4

1/4

m22 = 1
2
b− 1

2
c

TFT vs. GTFT

(1−ε)(n+ε)(m+ε−2mε)
mε+5nε+9ε2−12ε3+4ε4−6mε2+4mε3−10nε2+4nε3+mn−4mnε+4mnε2

2ε2 ε−1
2ε−2ε2 (m+ε−2)(ε+n−2nε)

mε+5nε+9ε2−12ε3+4ε4−6mε2+4mε3−10nε2+4nε3+mn−4mnε+4mnε2

2ε(ε−1)2(n+ε)
mε+5nε+9ε2−12ε3+4ε4−6mε2+4mε3−10nε2+4nε3+mn−4mnε+4mnε2

2ε2(ε−1)(m+ε−2)
mε+5nε+9ε2−12ε3+4ε4−6mε2+4mε3−10nε2+4nε3+mn−4mnε+4mnε2

m23

TFT vs. W SLS

1/4

1/4

1/4

1/4

m24 = 1
2
b− 1

2
c

TFT vs A llC

− (ε− 1) (2ε2 − 2ε+ 1)

−2ε2 ε−1
2ε−2ε2 (2ε2 − 2ε+ 1)

2ε (ε− 1)2

−2ε2 (ε− 1)

m25
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Interaction Stationary Distribution Payoffs

GTFT vs. A llD

−ε (ε− 1) n+ε
n−m+mε−nε+1

(ε− 1)2 n+ε
n−m+mε−nε+1

ε mε−ε−m+ε
2+1

n−m+mε−nε+1

− (ε− 1) mε−ε−m+ε2+1
n−m+mε−nε+1

m31

GTFT vs. TFT

(1−ε)(n+ε)(m+ε−2mε)
mε+5nε+9ε2−12ε3+4ε4−6mε2+4mε3−10nε2+4nε3+mn−4mnε+4mnε2

2ε(ε−1)2(n+ε)
mε+5nε+9ε2−12ε3+4ε4−6mε2+4mε3−10nε2+4nε3+mn−4mnε+4mnε2

2ε2 ε−1
2ε−2ε2 (m+ε−2)(ε+n−2nε)

mε+5nε+9ε2−12ε3+4ε4−6mε2+4mε3−10nε2+4nε3+mn−4mnε+4mnε2

2ε2(ε−1)(m+ε−2)
mε+5nε+9ε2−12ε3+4ε4−6mε2+4mε3−10nε2+4nε3+mn−4mnε+4mnε2

m32

GTFT vs. GTFT

−n 2m−2mε+nε−mn
ε3−2ε2−4nε+mn2+mε2+2nε2+n2ε−2mn+2mnε

nε n+ε−2
ε3−2ε2−4nε+mn2+mε2+2nε2+n2ε−2mn+2mnε

nε n+ε−2
ε3−2ε2−4nε+mn2+mε2+2nε2+n2ε−2mn+2mnε

ε2 m+ε−2
ε3−2ε2−4nε+mn2+mε2+2nε2+n2ε−2mn+2mnε

m33

GTFT vs. W SLS

(n+ε−2nε−ε2+2nε2−mn+2mnε)(ε−1)
4mε−7ε−n+4nε+15ε2−12ε3+4ε4−8mε2+4mε3−8nε2+4nε3+mn−4mnε+4mnε2

(nε−2ε+ε2+1)2ε(ε−1)
4mε−7ε−n+4nε+15ε2−12ε3+4ε4−8mε2+4mε3−8nε2+4nε3+mn−4mnε+4mnε2

−(2ε−2mε−nε−3ε2+ε3+4mε2−2mε3+2nε2+mnε−2mnε2)
4mε−7ε−n+4nε+15ε2−12ε3+4ε4−8mε2+4mε3−8nε2+4nε3+mn−4mnε+4mnε2

(mε−ε−m+ε2+1)2ε(ε−1)
4mε−7ε−n+4nε+15ε2−12ε3+4ε4−8mε2+4mε3−8nε2+4nε3+mn−4mnε+4mnε2

m34

GTFT vs. A llC

− ε−1
nε−mε+1 (nε− 2ε+ ε2 + 1)

ε
nε−mε+1 (nε− 2ε+ ε2 + 1)

ε (ε− 1) m+ε−2
nε−mε+1

−ε2 m+ε−2
nε−mε+1

m35
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Interaction Stationary Distribution Payoffs

WSLS vs. A llD

1
2
ε

1
2
−1
2
ε

1
2
ε

1
2
−1
2
ε

m41

WSLS vs. TFT

1/4

1/4

1/4

1/4

m42

WSLS vs. GTFT

(n+ε−2nε−ε2+2nε2−mn+2mnε)(ε−1)
4mε−7ε−n+4nε+15ε2−12ε3+4ε4−8mε2+4mε3−8nε2+4nε3+mn−4mnε+4mnε2

−(2ε−2mε−nε−3ε2+ε3+4mε2−2mε3+2nε2+mnε−2mnε2)
4mε−7ε−n+4nε+15ε2−12ε3+4ε4−8mε2+4mε3−8nε2+4nε3+mn−4mnε+4mnε2

(nε−2ε+ε2+1)2ε(ε−1)
4mε−7ε−n+4nε+15ε2−12ε3+4ε4−8mε2+4mε3−8nε2+4nε3+mn−4mnε+4mnε2

(mε−ε−m+ε2+1)2ε(ε−1)
4mε−7ε−n+4nε+15ε2−12ε3+4ε4−8mε2+4mε3−8nε2+4nε3+mn−4mnε+4mnε2

m43

WSLS vs. W SLS

−4ε3+7ε2−4ε+ 1

−ε (ε− 1)

−ε (ε− 1)

4ε3−5ε2+2ε

m44

WSLS vs. A llC

1
2
−1
2
ε

1
2
ε

1
2
−1
2
ε

1
2
ε

m45
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Interaction Stationary Distribution Payoffs

AllC vs. A llD

−ε (ε− 1)

(ε− 1)2

ε2

−ε (ε− 1)

m51 = bε− c+ cε

AllC vs. TFT

−2ε3 + 4ε2 − 3ε+ 1

2ε (ε− 1)2

2ε3 − 2ε2 + ε
−2ε2 (ε− 1)

m52 = b− c− 2bε+ cε+ 2bε2

AllC vs. GTFT

− ε−1
nε−mε+1 (nε− 2ε+ ε2 + 1)

ε (ε− 1) m+ε−2
nε−mε+1

ε
nε−mε+1 (nε− 2ε+ ε2 + 1)

−ε2 m+ε−2
nε−mε+1

m53 = b− c− 2bε+ cε+ bε2 + bnε

AllC vs. W SLS

−2ε3 + 4ε2 − 3ε+ 1

2ε (ε− 1)2

2ε3 − 2ε2 + ε
−2ε2 (ε− 1)

m54 = b− c− 2bε+ cε+ 2bε2

AllC vs. A llC

(ε− 1)2

−ε (ε− 1)
−ε (ε− 1)

ε2

m55 = (1− ε) (b− c)

Table 4: Stationary distributions and average expected payoffs for an iterated PD game
with an ecology of repeated rules consisting of AllD, TFT, GTFT, WSLS and AllC
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where,

m13 = bε− cε− bε2 + bn− bnε

m21 = ε (b− 2c+ 2cε)

m23 = − cε−bε+bε2−bn+cn+bnε−2cnε
n+3ε−2nε−2ε2

m25 = b− c− bε+ 2cε− 2cε2

m31 = bε− cε+ cε2 − cn+ cnε

m32 = bε−cε+cε2+bn−cn−2bnε+cnε
n+3ε−2nε−2ε2

m34 = −m341/m342, with

m341 = 3bε− 3cε− bn2 + cn2 − 5bε2 + 2bε3 + 8cε2 − 7cε3 + 2cε4 + bn− cn− 4bn2ε2+

+2cn2ε2 − 6bnε+ 3cnε+ 10bnε2 + 4bn2ε− 4bnε3 − 6cnε2 − 3cn2ε+ 4cnε3

m342 = 4n2ε2 − 4n2ε+ n2 + 8nε3 − 16nε2 + 8nε− n+ 4ε4 − 12ε3 + 15ε2 − 7ε

m35 = b− c− bε+ 2cε− cε2 − cnε

m41 = bε−1
2
c

m42 = 1
2
(b− c)

m43 = m431/m342

m431 = 3cε− 3bε+ bn2 − cn2 + 8bε2 − 7bε3 + 2bε4 − 5cε2 + 2cε3 − bn+ cn+ 2bn2ε2−

−4cn2ε2 + 3bnε− 6cnε− 6bnε2 − 3bn2ε+ 4bnε3 + 10cnε2 + 4cn2ε− 4cnε3

m44 = (b− c) (1− 4ε3 + 6ε2 − 3ε)

m45 = b− 1
2
c−bε
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