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Multiple Steady States, Limit Cycles and Chaotic

Attractors in Evolutionary Games with Logit Dynamics�

Cars H. Hommesy Marius I. Ocheaz

26th February 2010

Abstract

This paper investigates, by means of simple, three and four strategy games, the oc-

currence of periodic and chaotic behaviour in a smooth version of the Best Response

Dynamics, the Logit Dynamics. The main �nding is that, unlike Replicator Dynamics,

generic Hopf bifurcation and thus, stable limit cycles, do occur under the Logit Dy-

namics, even for three strategy games. Moreover, we show that the Logit Dynamics

displays another bifurcation which cannot to occur under the Replicator Dynamics: the

fold catastrophe. Finally, we �nd, in a four strategy game, a period-doubling route to

chaotic dynamics under a �weighted�version of the Logit Dynamics.
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1 Introduction

A large part of the research on evolutionary game dynamics focused on identifying conditions

that ensure uniqueness of and/or convergence to point-attractors such as a Nash Equilib-

rium or an Evolutionary Stable Strategy (ESS). Roughly speaking, within this �convergence�

literature one can further distinguish between literature focusing on classes of games (e.g.

Milgrom and Roberts (1991), Nachbar (1990), Hofbauer and Sandholm (2002)) and literature

on di¤erent classes of evolutionary dynamics (e.g. Cressman (1997), Hofbauer (2000), Hof-

bauer and Weibull (1996) , Sandholm (2005), Samuelson and Zhang (1992)). Nevertheless,

there are some examples of periodic and chaotic behaviour in the literature, mostly under a

particular kind of evolutionary dynamics, the Replicator Dynamics. Motivated by the idea of

adding an explicit dynamical process to the static concept of Evolutionary Stable Strategy,

Taylor and Jonker (1978) introduced the Replicator Dynamics. It soon found applications in

biological, genetic or chemical systems, those domains where organisms, genes or molecules

evolve over time via replication. The common feature of these systems is that they can be

well approximated by an in�nite population game with random pairwise matching, giving rise

to a replicator-like evolutionary dynamics given by a low-dimensional dynamical system.

In the realm of the non-convergence literature two issues are particularly important: the

existence of stable periodic and complicated solutions and their robustness (e.g. to slight

perturbations in the payo¤s matrix). Hofbauer et al. (1980) and Zeeman (1981) investigate

the phase portraits resulting from three-strategy games under the replicator dynamics and

conclude that only �simple�behaviour - sinks, sources, centers, saddles - can occur. In general,

an evolutionary dynamics together with a n�strategy game de�nes a proper n� 1 dynamical

system on the n � 1 simplex. An important result proven by Zeeman (1980), is that under

Replicator Dynamics, there are no generic Hopf bifurcations on the 2-simplex: "When n = 3

all Hopf bifurcations are degenerate"1. Bomze (1983, 1995) provides a detailed classi�cation of

the planar phase portraits for all 3-strategy games according to the number, location (interior

1Zeeman (1980), pp. 493

2



or on boundary of the simplex) and stability properties of the Replicator Dynamics �xed

points and identify 49 di¤erent phase portraits: again, only non-robust cycles are created

usually via a degenerate Hopf bifurcation. In Replicator Dynamics only the "hairline" case of

a continuum of cycles occurs, which are non-generic and disappear by slightly perturbing the

payo¤parameters. Another possibility in Replicator Dynamics is a so-called heteroclinic cycle

consisting of saddle steady-states on the boundary of the simplex and their connecting saddle

paths. Generic limit cycles do not arise in 3-strategy games under Replicator Dynamics.

Hofbauer (1981) proves that in a 4-strategy game stable limit cycles are possible under

Replicator Dynamics; the proof consists in �nding a suitable Lyapunov function whose time

derivative vanishes on the !�limit set of a periodic orbit. Stable limit cycles are also repor-

ted in Akin (1982) in a genetic model where gene �replicates� via the two allele-two locus

selection; this is not surprising as the dynamical system modeling gametic frequencies is three-

dimensional, the dynamics is of Replicator type and the Hofbauer (1981) proof applies here,

as well. Furthermore, Maynard Smith and Hofbauer (1987) prove the existence of a stable

limit cycle for an asymmetric, Battle of Sexes-type genetic model where the allelic frequencies

evolution de�nes again a 3-D system. Their proof hinges on normal form reduction together

with averaging and elliptic integrals techniques for computing the phase and angular velocity

of the periodic orbit. Stadler and Schuster (1990) perform an impressive systematic search for

both generic transitions (�xed points exchanging stability) and degenerate transitions (stable

and unstable �xed points colliding into a one or two-dimensional manifold at the critical

parameter value) between phase portraits of the replicator equation on 3 � 3 normal form

game.

Chaotic behaviour is found by Schuster et al. (1991) in Replicator Dynamics for a 4-

strategy game matrix derived from an autocatalytic reaction network. They report the stand-

ard Feigenbaum route to chaos: a cascade of period-doubling bifurcations intermingled with

several interior crisis and collapses to a chaotic attractor. Numerical evidence for strange at-

tractors is provided by Skyrms (1992, 2000) for a Replicator Dynamics �ow on two examples
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of a four-strategy game.

Although periodic and chaotic behaviour is substantially documented in the literature

for the Replicator Dynamics, there is much less evidence for such complicated behaviour in

classes of evolutionary dynamics that are more appropriate for human interaction (�ctitious

play, best response dynamics, adaptive dynamics, etc.). While Shapley (1964) constructs

an example of a non-zero sum game with a limit cycle under �ctitious play and Berger and

Hofbauer (2006) �nd stable periodic behaviour - two limit cycles bounding an asymptotically

stable annulus - for a di¤erent dynamic - the Brown-von Newmann Nash (BNN) - a systematic

characterization of (non) generic bifurcations of phase portraits is still missing for the Best

Response dynamics.

The purpose of this paper is to study a smoothed version of the Best Response dynamics

- the Logit Dynamics - to study evolutionary dynamics in simple, well-known, three and

four strategies games such as Rock-Paper-Scissors and Coordination Game. In particular we

focus on generic possibilities of complicated dynamics (i.e. stable limit cycles, multiple steady

states, chaos). The qualitative behaviour of the �evolutionary�games with Logit Dynamics is

investigated with respect to changes in the payo¤ and behavioural parameters. In addition to

analytical results on local stability and bifurcations, we use the advanced bifurcation software

Matcont (Dhooge et al. (2003)) to numerically detect bifurcation curves in the parameter

space.

Most of the earlier discussed evolutionary game examples are inspired from biology and

not from social sciences. From the perspective of strategic interaction the main criticism

of the �biological�game-theoretic models is targeted at the intensive use of preprogrammed,

simple imitative play with no role for optimization and innovation. Speci�cally, in the trans-

ition from animal contests and biology to humans interactions and economics the Replicator

Dynamics seems no longer adequate to model the rationalistic and �competent�forms of be-

haviour (Sandholm (2008)). Best Response Dynamics would be more applicable to human

interaction as it assumes that agents are able to optimally compute and play a (myopic) �best
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response� to the current state of the population. But, while the Replicator Dynamics ap-

peared to impose an unnecessarily loose rationality assumption the Best Response dynamics

moves to the other extreme: it is too stringent in terms of rationality. Another drawback is

that, technically, the best reply is not necessarily unique and this leads to a di¤erential inclu-

sion instead of an ordinary di¤erential equation. One way of solving these problems was to

stochastically perturb the matrix payo¤s and derive, via the discrete choice theory, a �noisy�

Best Response Dynamics, called the Logit Dynamics. Mathematically it is a �smoothed�, well-

behaved dynamics while from the strategic interaction point of view it models a boundedly

rational player/agent. Moreover, from a nonlinear dynamical systems perspective the Replic-

ator Dynamic is, in fact, non-generic in dimension two and only degenerate Hopf bifurcations

can arise on the 2-simplex. In sum, apart from its conjectured generic properties, the Logit

is recommended by the need for modelling players with di¤erent degrees of rationality and

for smoothing the Best Response correspondence.

The paper is organized as follows: Section 2 introduces the Logit Dynamics, while Section

3 gives a brief overview of the Hopf bifurcation theory. In Section 4 the Logit Dynamics is

implemented on Rock-Scissors-Paper and in Section 5 on a Coordination game. Section 6

discusses an example of chaotic dynamics under a frequency-weighted version of the Logit

Dynamics and Section 7 concludes.

2 Replicator vs. Logit Dynamics

Evolutionary game theory deals with games played within a (large) population over a long

time horizon (evolution scale). Its main ingredients are the underlying normal form game -

with payo¤ matrix A[n� n] - and the evolutionary dynamic class which de�nes a dynamical

system on the state of the population. In a symmetric framework, the strategic interaction

takes the form of random matching with each of the two players choosing from a �nite set

of available strategies E = fE1; E2;:::Eng: For every time t; x(t) denotes the n-dimensional
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vector of frequencies for each strategy/type Ei and belongs to the n� 1 dimensional simplex

�n�1 = fx 2 Rn :
nP
i=1

xi = 1g: Under the assumption of random interactions strategy Ei

�tness would be simply determined by averaging the payo¤s from each strategic interaction

with weights given by the state of the population x . Denoting with f(x) the payo¤ vector,

its components - individual payo¤ or �tness of strategy i in biological terms - are:

fi(x) = (Ax)i (1)

Sandholm (2008) rigorously de�nes an evolutionary dynamics as a map assigning to each

population game a di¤erential equation _x = V(x) on the simplex �n�1: In order to derive

such an �aggregate�level vector �eld from individual choices he introduces a revision protocol

�ij(f(x);x) indicating, for each pair (i; j) , the rate of switching(�ij) from the currently played

strategy i to strategy j: The mean vector �eld is obtained as:

_xi = Vi(x) = in�ow into strategy i - out�ow from strategy i

=
nX
j=1

xj�ji(f(x);x)� xi
nX
j=1

�ij(f(x);x): (2)

Based on the computational requirements/quality of the revision protocol � the set of evol-

utionary dynamics splits into two large classes: imitative dynamics and pairwise comparison

(�competent�play). The �rst class is represented by the most famous dynamics, the Replicator

Dynamic (Taylor and Jonker (1978)) which can be easily derived by substituting into (2) the

pairwise proportional revision protocol: �ij(f(x);x) = xj[fj(x)�fi(x)]+ (player i switches to

strategy j at a rate proportional with the probability of meeting an j-strategist(xj) and with

the excess payo¤ of opponent j-[fj(x)�fi(x)]- i¤ positive):

_xi = xi[fi(x)� �f(x)] = xi[(Ax)i�xAx] (3)

where �f(x) = xAx is the average population payo¤.

6



Although widely applicable to biological/chemical models, the Replicator Dynamics lacks

the proper individual choice, micro-foundations which would make it attractive for modelling

human interactions. The alternative - Best Response dynamics - already introduced by

Gilboa and Matsui (1991) requires extra computational abilities from agents, beyond merely

sampling randomly a player and observing the di¤erence in payo¤: speci�cally being able to

compute a best reply strategy to the current population state:

_xi = BR(x)� xi (4)

where,

BR(x) = argmax
y
yf(x)

Discrete choice models-the Logit evolutionary dynamics

Apart from the highly unrealistic assumptions regarding agents capacity to compute a perfect

best reply to a given population state there is also the drawback that (4) de�nes a di¤erential

inclusion, i.e. a set-valued function. The best responses may not be unique and multiple

trajectory paths can emerge from the same initial conditions. A �smoothed�approximation

of the Best Reply dynamics - the Logit dynamics - was introduced by Fudenberg and Levine

(1998). It was obtained by stochastically perturbing the payo¤ vector f(x) and deriving the

Logit revision protocol:

�ij(f(x);x) =
exp[��1fj(x)]P
k exp[�

�1fk(x)]
=

exp[��1Ax)i]P
k exp[�

�1Ax)k]
; (5)

where � > 0 is the noise level. Here �ij represents the probability of player i switching to

strategy j when provided with a revision opportunity. For high levels of noise the choice is

fully random (no optimization) while for � close to zero the switching probability is almost

one.
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Another way to obtain (5) is to deterministically perturb the set-valued best reply corres-

pondence (4) with a strictly concave function V (y) (Hofbauer (2000)):

BR�(x) = arg max
y2�n�1

[y � (Ax) + V�(y)]

For a particular choice of the perturbation function V�(y) = �
P
i=1;n

yi log yi; y 2�n�1 the

resulting objective function is single-valued and smooth; the �rst order condition yields the

unique logit choice rule:

BR�(x)i =
exp[��1Ax)i]P
k exp[�

�1Ax)k]
.

Plugging the Logit revision protocol (5) back into the general form of the mean �eld

dynamic (2) and making the substitution � = ��1 we obtain a well-behaved system of o.d.e.�s,

the Logit dynamics with the intensity of choice (Brock and Hommes (1997)) parameter �:

_xi =
exp[�Ax)i]P
k exp[�Ax)k]

� xi (6)

The quantal response equilibria of McKelvey and Palfrey (1995), also called �logit equilib-

ria�for a logistic response function, are �xed points of the Logit Dynamics. When � !1 the

probability of switching to the discrete �best response�j is close to one while for a very low

intensity of choice (� ! 0) the switching rate is independent of the actual performance of the

alternative strategies (equal probability mass is put on each of them). The Logit dynamics

displays some properties characteristic to the logistic growth function, namely high growth

rates ( _xi) for small values of xi and growth �levelling o¤�when close to the upper bound.

This means that a speci�c frequency xi grows faster when it is already large in the Replicator

Dynamics relative to the Logit dynamics.
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3 Hopf and degenerate Hopf bifurcations

Since the possible existence of stable limit cycles is an important theme in this paper, for

the convenience of the general reader we brie�y review the main bifurcation route towards

a stable limit cycle, the Hopf bifurcation. In a one-parameter family of continuous-time

systems, the only generic bifurcation through which a limit cycle is created or disappears is

the non-degenerate Hopf bifurcation. The planar case will be discussed �rst and then, brie�y,

the methods to reduce higher-dimensional systems to the two-dimensional case.

Assume we are given a parameter-dependent, two dimensional system (as in, for example,

Kuznetsov (1995)):

_x = f(x; �);x 2 R2; � 2 R; f smooth, (7)

with a steady state at x� = 0; i.e. f(0; �) = 0 and the Jacobian matrix evaluated at the

�xed point x� = 0 having a pair of purely imaginary, complex conjugate eigenvalues at the

bifurcation value � = 0; i.e. �1;2 = �(�) � i!(�) with �(�) < 0 for � < 0; �(0) = 0 and

�(�) > 0 for � > 0:

If , in addition, the following genericity2 conditions are satis�ed:

(i)
h
@�(�)
@�

i
�=0

6= 0 - transversality condition

(ii) l1(0) 6= 0, where l1(0) is the �rst Lyapunov coe¢ cient3 - nondegeneracy condition,

then the system (7) undergoes a Hopf bifurcation at � = 0: As � increases the steady

state changes stability from a stable focus into an unstable focus.

There are two types of Hopf bifurcation, depending on the sign of the �rst Lyapunov

coe¢ cient l1(0) :

2Genericity usually refer to transversality and non-degeneracy conditions. Rougly speaking, the trans-
versality condition means that complex eigenvalues cross the real line at non-zero speed. The nondegeneracy
condition implies non-zero higher-order coe¢ cients in equation (10) below. It ensures that the singularity
x� is typical (i.e. �nondegenerate�) for a class of singularities satisfying certain bifurcation conditions. See
Kuznetsov (1995) pp. 89� 98 for a complete mathematical description of the Hopf bifurcation.

3This is the coe¢ cient of the third order term in the normal form of the Hopf bifurcation (see equation
(10) below).
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(a) If l1(0) < 0 then the Hopf bifurcation is supercritical : the stable focus x becomes

unstable for � > 0 and is surrounded by an isolated, stable closed orbit (limit cycle).

(b)If l1(0) > 0 then the Hopf bifurcation is subcritical : for � < 0 the basin of attraction

of the stable focus x� is surrounded by an unstable cycle which shrinks and disappears as �

crosses the critical value � = 0 while the system diverges quickly from the neighbourhood of

x�.

In case (a) the stable cycle is created immediately after � reaches the critical value and

thus the Hopf bifurcation is called supercritical, while in case (b) the unstable cycle already

exists before the critical value, i.e. a subcritical Hopf bifurcation. The supercritical Hopf is

also known as a soft or non-catastrophic bifurcation because , even when the system becomes

unstable, it still lingers within a small neighbourhood of the equilibrium bounded by the

limit cycle, while the subcritical case is a sharp/catastrophic bifurcation as the system moves

quickly far away from the unstable equilibrium.

If the �rst Lyapunov coe¢ cient l1(0) = 0 then there is a degeneracy in the third order

terms of the normal form and , if other, higher order nondegeneracy conditions hold(i.e. non-

vanishing second Lyapunov coe¢ cient) then the bifurcation is called Bautin or generalized

Hopf bifurcation. This happens when the �rst Lyapunov coe¢ cient vanishes at the given

equilibrium x� but the following higher-order genericity4 conditions hold:

(i) l2(0) 6= 0, where l2(0) is the second Lyapunov coe¢ cient - nondegeneracy condition

(ii) the map � ! (�(�); l1(�)) is regular (i.e. the Jacobian matrix is nonsingular) at the

critical value � = 0 - transversality condition.

Depending on the sign of l2(0), at the Bautin point the system may display a limit cycle

bifurcating into two or more cycles , coexistence of stable and unstable cycles which collide

4Technically, these �higher-order�genericity conditions ensure that there are smooth invertible coordinate
transformations, depending smoothly on parameters, together with parameter changes and (possibly) time
re-parametrizations such that (7) can be reduced to a �simplest�form, the normal form. See Kuznetsov (1995)
pp. 309 � 316 for more details on the Bautin (generalized Hopf) bifurcation and for an expression for the
second Lyapunov coe¢ cient l2(0):

10



and disappear, together with so-called cycle blow-up.

Computation of the �rst Lyapunov coe¢ cient

For the planar case, the �rst Lyapunov coe¢ cient l1(0) can be computed without explicitly

deriving the normal form, from the Taylor coe¢ cients of a transformed version of the original

vector �eld. The computation of l1(0) for higher dimensional systems makes use of the Center

Manifold Theorem by which the orbit structure of the original system near (x�; �), is fully

determined by its restriction to the two-dimensional center manifold5. On the center manifold

(7) takes the form (Wiggins (2003)):

_x =

0B@ _x

_y

1CA =

0B@ Re�(�) � Im�(�)

Im�(�) Re�(�)

1CA
0B@ x

y

1CA+
0B@ f 1(x; y; �)

f 2(x; y; �)

1CA (8)

where �(�) is an eigenvalue of the linearized vector �eld around the steady state and the

nonlinear functions f1(x; y; �); f2(x; y; �) of order O(jxj2) are derived from the original vector

�eld. Wiggins (2003) also provides a procedure for transforming (7) into (8). Speci�cally,

for any vector �eld _x = F (x);x 2 R2 let DF (x�) denote the Jacobian evaluated at the �xed

point x�.Then _x = F (x) is equivalent to:

_x = Jx+ T�1 �F (Tx) (9)

where J stands for the real Jordan canonical form of DF (x�); T is the matrix transforming

DF (x�) into the Jordan form, and �F (x) = F (x) �DF (x�)x: At the Hopf bifurcation point

�; �1;2 = �i! and the �rst Lyapunov coe¢ cient is (Wiggins (2003)):

l1(�) =
1

16
[f 1xxx+f

1
xyy+f

2
xxy+f

2
yyy] + (10)

+
1

16!
[f 1xy(f

1
xx+f

1
yy)� f

2
xy(f

2
xx+f

2
yy)� f

1
xxf

2
xx+f

1
yyf

2
yy]

5The center manifold is the invariant manifold spanned by the eigenvectors corresponding to the eigenvalues
with zero real part (Kuznetsov (1995) pp. 157).
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4 Rock-Scissors-Paper Games

The Rock-Paper-Scissors class of games (or games of cyclical dominance) formalize strategic

interactions where each strategy Ei is an unique best response to strategy Ei+1 for i = 1; 2

and E3 is a best response to E16:

A =

0BBBBBBB@

E1 E2 E3

E1 0 �2 �"3

E2 �"1 0 �3

E3 �1 �"2 0

1CCCCCCCA
; �i; "i � 0 (11)

If matrix (11) is circulant (i.e. �i = �; "i = "; i = 1; 2; 3) then the RSP game is called circulant,

while for a non-circulant matrix (11) we have a generalized RSP game7. The behavior of

Replicator and Logit Dynamics on the class of circulant RSP games will be investigated, both

analytically and numerically, in the �rst and second part of this subsection, respectively.

Circulant RSP Game and Replicator Dynamics

The circulant RSP game is a �rst generalization of the classical, zero-sum form of RSP game

as discussed in, for instance, Hofbauer and Sigmund (2003):

A =

0BBBB@
0 � �"

�" 0 �

� �" 0

1CCCCA ; �; " > 0 (12)

6See Weissing (1991) for a thourough charaterization of the discrete-time Replicator Dynamics behavior
on the most general representation of this class of games, i.e. the matrix (11) before the normalization.

7We focus on the simple case of circulant RSP game, which is su¢ cient for our purpose; see Chapter 2 of
Ochea (2009) for the numerical computation of bifurcation curves under continuous-time Logit Dynamics on
the generalized RSP games.
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Letting x(t) = (x(t); y(t); z(t)) denote the population state at time instance t de�ne a point

from the 2-dimensional simplex, the payo¤ vector [Ax] is obtained via (1):

[Ax] =

0BBBB@
y� � z"

�x"+ z�

x� � y"

1CCCCA (13)

Average �tness of the population is:

xAx = x (y� � z") + y (�x"+ z�) + z (x� � y") (14)

The replicator equation (3) with the game matrix (12) induce on the 2-simplex the following

vector �eld: 266664
_x = x[y� � z"� (x (y� � z") + y (�x"+ z�) + z (x� � y"))]

_y = y[�x"+ z� � (x (y� � z") + y (�x"+ z�) + z (x� � y"))]

_z = z[x� � y"� (x (y� � z") + y (�x"+ z�) + z (x� � y"))]

377775 (15)

While Hofbauer and Sigmund (2003) use the Poincare-Bendixson theorem together with the

Dulac criterion to prove that limit cycles cannot occur in games with three strategies under the

replicator we will derive this negative result using tools from dynamical systems, in particular

the Hopf bifurcation and �normal form�theory. The same toolkit will be applied next to the

Logit Dynamic and a positive result - stable limit cycles do occur - will be derived.

As we are interested in limit cycles within the simplex we only consider interior �xed

points of this system (any replicator dynamic has the simplex vertices as steady states, too).

For the parameter range "; � > 0 the barycentrum x� = [x = 1=3; y = 1=3; z = 1=3] is always

an interior �xed point of (15). In order to analyze its stability properties we obtain �rst, by
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substituting z = 1� x� y into (15), a proper 2 dimensional dynamical system of the form:

264 _x

_y

375 =
264 �x"+ 2xy"� x2� + 2x2"+ x3� � x3"+ xy2� + x2y� � xy2"� x2y"

y� � 2xy� � 2y2� + y2"+ y3� � y3"+ xy2� + x2y� � xy2"� x2y"

375 : (16)

We can detect the Hopf bifurcation threshold at the point where the trace of the Jacobian

matrix of (16) is equal to zero. The Jacobian evaluated at the barycentrical steady state x� is264 " � + "

�� � " ��

375, with eigenvalues: �1;2("; �) = 1
2
("��)� i

p
3
2

p
("+ �)2 and trace "��: For

� < "; x� is an unstable focus, at � = " a pair of imaginary eigenvalues crosses the imaginary

axis(�1;2 = �i
p
3�), while for � > " x� becomes a stable focus (see Fig. (1) below). This is

consistent with Theorem 6 in Zeeman (1980) which states that the determinant of the matrix

A determines the stability properties of the interior �xed point. In the circulant RSP game

(12) DetA = "3� �3 vanishes for " = �: By the same Theorem 6 in Zeeman (1980) the vector

�eld (15) has a center in the 2-simplex and a continuum of cycles if DetA = 0:

Alternatively, our local bifurcation analysis shows that a Hopf bifurcation occurs when

" = � and in order to ascertain its features - sub/supercritical or degenerate - we have to

further investigate the nonlinear vector �eld near the (x�; " = �) point. The Hopf bifurcation

necessary condition " = � implies that vector �eld (16) takes a simpler form:

264 _x

_y

375 =
264 �x� + 2xy� + x2�
y� � 2xy� � y2�

375 (17)

Using equation (8) and the eigenvalues �1;2 = �i
p
3� at the Hopf bifurcation point (" =

�); we can back out the nonlinear functions f 1; f2 needed for the computation of the �rst

Lyapunov coe¢ cient:

264 f1(x; y) = y
p
3� � x� + 2xy� + x2�

f2(x; y) = �x
p
3� + y� � 2xy� � y2�

375 (18)
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We can now state the following result:

Lemma 1 All Hopf bifurcations are degenerate in the circulant Rock-Scissor-Paper game

under Replicator Dynamics.

Proof. From the nonlinear functions f1(x; y); f2(x; y) derived above we can easily compute

the �rst Lyapunov coe¢ cient (10) as l1("Hopf = �
Hopf ) = 0 which means that there is a �rst

degeneracy in the third order terms from the Taylor expansion of the normal form. The

detected bifurcation is a degenerate Hopf bifurcation8.

Although, in general, the orbital structure at a degenerate Hopf bifurcation may be ex-

tremely complicated (see Section 3), for our particular vector �eld induced by the Replicator

Dynamics it can be shown by Lyapunov function techniques (Hofbauer and Sigmund (2003),

Zeeman (1980)) that a continuum of cycles is born exactly at the critical parameter value9.
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� = 0:6; " = 1
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(b) Degenerate Hopf,
� = 1; " = 1
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(c) Stable focus,
� = 1:1; " = 1

Figure 1: Rock-Scissors-Paper and Replicator Dynamics for �xed " = 1 and varying �. Qual-
itative changes in the phase portraits - unstable focus (Panel (a)), continuum of cycles (Panel
(b)) and stable focus (Panel (c)) - occur as we increase � from below to above ".

8Since all 3rd and higher-order terms in (18) are zero, the Hopf bifurcation has, in fact, an "in�nite number
of degeneracies" with all higher order Lyapunov coe¢ cients li("Hopf = �

Hopf ) = 0; i � 2: This explains why,
for the Replicator Dynamics, a continuum of cycles exists after the Hopf bifurcation.

9The absence of a generic Hopf bifurcation does not su¢ ce to conclude that the vector �eld admits no
isolated periodic orbits and �global�results are required (e.g. the Bendixson-Dulac method, positive divergence
of the vector �eld on the simplex).
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It is worthwhile pointing out the connection between our local (in)stability results and

the static concept of Evolutionary Stable Strategy (ESS). As already noted in the literature

(Zeeman (1980), Hofbauer (2000)) ESS implies (global) asymptotic stability under a wide class

of evolutionary dynamics - Replicator Dynamics, Best Response and Smooth Best Response

Dynamics, Brown-von Newmann-Nash, etc. The reverse implication does not hold in general,

i.e. the local stability analysis does not su¢ ce to qualify an attractor as an ESS. However,

for � < " we have shown that x� is an unstable focus and we can conclude that, for this class

of RSP games, the barycentrum is not an ESS. Indeed, the case � < " is the so called bad

RSP game (Sandholm (2008)) which is known not to have an ESS. For � > " we are in the

good RSP game and it does have an interior ESS which coincides with the asymptotically

stable rest point x� of the Replicator Dynamics. Last, if � = " (i.e. standard RSP) then x�

is a neutrally stable strategy/state and we proved that in this zero-sum game the Replicator

undergoes a degenerate Hopf bifurcation. The Hopf bifurcation scenario is illustrated in Fig.

1 for a �xed value of " = 1:

Circulant RSP Game and Logit Dynamics

The Logit evolutionary dynamics (6) applied to the circulant normal form game (12) leads to

the following vector �eld:

266664
_x = exp(�(y��z"))

exp(�(y��z"))+exp(�(�x"+z�))+exp(�(x��y")) � x

_y = exp(�(�x"+z�))
exp(�(y��z"))+exp(�(�x"+z�))+exp(�(x��y")) � y

_z = exp(�(x��y"))
exp(�(y��z"))+exp(�(�x"+z�))+exp(�(x��y")) � z

377775 (19)

By substituting z = 1� x� y into (19) we can reduce to a 2-dimensional system:

264 exp(�(y��"(�x�y+1)))
exp(�(x��y"))+exp(�(�x"+�(�x�y+1)))+exp(�(y��"(�x�y+1))) � x = 0

exp(�(�x"+�(�x�y+1)))
exp(�(x��y"))+exp(�(�x"+�(�x�y+1)))+exp(�(y��"(�x�y+1))) � y = 0

375 (20)
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The 2 � dim simplex barycentrum [x = 1=3; y = 1=3; z = 1=3] remains a �xed point

irrespective of the value of �. The Jacobian of (20) evaluated at this steady state is:264 1
3
�"� 1 1

3
�� + 1

3
�"

�1
3
�� � 1

3
�" �1

3
�� � 1

375 ; with eigenvalues: �1;2 = 1
6
�("� �)� 1� i1

2

q
1
3
(�� + �"):The

Hopf bifurcation (necessary) condition Re(�1;2) = 0 leads to:

�Hopf =
6

"� � ; 0 < � < " (21)

We notice that for the zero-sum RSP game (" = �) - unlike Replicator Dynamics which

exhibited a degenerate Hopf at " = � - the barycentrum is always asymptotically stable

(Re�1;2 = �1) under Logit Dynamics. For " < �, i.e. the "good" RSP game, the interior

steady state is always locally stable under Logit Dynamics. We have the following:

Lemma 2 The Logit Dynamics (19) on the circulant Rock-Scissors-Paper game exhibits a

generic Hopf bifurcation and, therefore, has limit cycles. Moreover, all such Hopf bifurcations

are supercritical, i.e. the limit cycle is born stable.

Proof. Condition (21) gives the necessary �rst-order condition for Hopf bifurcation to

occur; in order to show that the Hopf bifurcation is non-degenerate we have to compute the

�rst Lyapunov coe¢ cient l1(�
Hopf ; "; �) according to (10) and check whether it is non-zero.

The analytical form of this coe¢ cient takes a complicated expression of exponential terms

(see Appendix A) which, after some tedious computations, boils down to:

l1(�
Hopf ; "; �) = �864(�"+ �

2 + "2)

3(3"� 3�)2 < 0; " > � > 0:

Computer simulations of this route to a stable cycle are shown in Fig. 2. We notice that

as � increases from 10 to 35 (i.e. the noise level is decreasing) the interior stable steady state

looses stability via a supercritical Hopf bifurcation and a small, stable limit cycle emerges
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around the unstable steady state. Unlike Replicator Dynamics, stable cyclic behavior does

occur under the Logit dynamics even for three-strategy games.
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(a) Stable focus, � = 10
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(b) Generic Hopf, � = 30
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(c) Limit cycle, � = 35

Figure 2: Rock-Scissors-Paper and Logit Dynamics for �xed game " = 1; � = 0:8 and di¤erent
values of the behavioral parameter �. Qualitative changes in the phase portraits: a stable
interior �xed point (Panel (a)) loses stability when the critical threshold � = 30 is hit, via
a generic, supercritical Hopf bifurcation (Panel (b)) and, if � is pushed up even further, a
stable limit cycle is born (Panel (c)).

Similar cycles can be detected in the payo¤ parameter space as in Fig. 3 where the noise

level is kept constant and the game parameter � is allowed to change.
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(b) Hopf, � = 0:399
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(c) Limit cycle, � = 0:1

Figure 3: Rock-Scissors-Paper and Logit Dynamics for �xed behavioral parameter � = 10
and free game parameter � [" = 1]. Qualitative changes in the phase portraits: a stable
interior �xed point (Panel (a)) loses stability when the critical threshold � = 0:399 is hit, via
a generic, supercritical Hopf bifurcation (Panel (b)). Panel (c) display a stable limit cycle for
� = 0:1 that attracts trajectories originating both outside and inside the cycle.
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Figure 4 depicts a curve of Hopf bifurcations in the (�; "��) parameter space. As we cross

this Hopf curve from below the stable interior �xed point loses stability and a stable periodic

attractor surrounds it. The picture summarizes the possible types of dynamical behavior for

the "good" and the "bad" Rock-Paper-Scissors game. Thus, for " < � (i.e. "good" RSP

game) the interior, fully mixed steady state is always locally10 stable under Logit Dynamics,

similar to the behavior of Replicator Dynamics on this class of RSP games. For " > � (i.e.

"bad" RSP game) the behavior depends on how sensitive players are to di¤erences in �tness,

and, unlike Replicator Dynamics, Logit displays richer dynamics.

6 4 2 0 2 4 6 8 10
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β

stable
limit cyclestable

steady state

stable
steady state

H

H

Figure 4: Rock-Scissors-Paper and Logit Dynamics: Supercritical Hopf curve in (�; " � �)
parameter space. Continuation of a detected co-dimension I singularity (i.e. Hopf bifurcation)
with respect to a second parameter gives rise to a curve of supercritical Hopf points in the
circulant RSP class of games.

10Numerical simulations suggest that for " < � the steady state is even globally stable.
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5 Coordination Game

Using topological arguments, Zeeman (1980) shows that three-strategies games have at most

one interior, isolated �xed point under Replicator Dynamics11. This implies that a fold12

catastrophe in which two isolated �xed points collide and disappear when some parameter

is varied, cannot occur in the interior of the simplex. In this section we show - by means

of the classical coordination game - that multiple, isolated, interior steady-states may exist

under Logit Dynamics and show that the fold catastrophe occurs when we alter the intensity

of choice �. We use advanced numerical tools (Dhooge et al. (2003)) for detecting fold

catastrophe bifurcation curves in the parameter space. As our goal is to investigate possible

routes to multiplicity of steady states, we consider the simplest version of a symmetric 3� 3

pure coordination game, given by the following payo¤ matrix:

A =

0BBBB@
1� " 0 0

0 1 0

0 0 1 + "

1CCCCA ; 0 < " < 1: (22)

Coordination Game and Replicator Dynamics

Under Replicator Dynamics, vector �eld _x = x[Ax � xAx] on the Coordination game (22)

yields: 266664
_x = x[x (�"+ 1)� (y2 + z2 ("+ 1) + x2 (�"+ 1))]

_y = y[y � (y2 + z2 ("+ 1) + x2 (�"+ 1))]

_z = z[z ("+ 1)� (y2 + z2 ("+ 1) + x2 (�"+ 1))]

377775 (23)

This systems has the following �xed points in simplex coordinates:

11See Theorem 3 pp. 478 in Zeeman (1980).
12In a parameter-dependent, continous-time dynamical system a fold bifurcation occurs when the Jacobian

matrix evaluated at the critical equilibrium has a zero eigenvalue. Technically, other higher-order non-
degeneracy conditions must hold, as well. See Kuznetsov (1995) pp. 81� 84 for a complete treatment of the
fold bifurcation.
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(i) 3 stable nodes at the simplex vertices: (1; 0; 0); (0; 1; 0); (0; 0; 1)

(ii) a repelling interior steady state: O ( "+1
3�"2 ;

1�"2
3�"2 ;

1�"
3�"2 )

(iii) 3 saddles at the boundaries:

M ( 1
2�" ;

1�"
2�" ; 0); N ( 1

2�" ; 0;
1�"
2�"); P (0;

1
2�" ;

1�"
2�")

The eigenvalues of the corresponding Jacobian evaluated at each of the above �xed points

are:

A [x = 0; y = 1; z = 0] ; eigenvalues: �1;2;3 = �1

B [x = 1; y = 0; z = 0]; eigenvalues: �1;2;3 = "� 1

C [x = 0; y = 0; z = 1]; eigenvalues: �1;2;3 = �"� 1

O [x = "+1
3�"2 ; y =

1�"2
3�"2 ; z =

1�"
3�"2 ]; eigenvalues: �1;2 =

"2�1
"2�3 > 0; for " 2 (0; 1)

M [x = 1
2�" ; y =

1�"
2�" ; z = 0]; eigenvalues: �1;2 = �

1�"
"�2

N [x = 1
2�" ; y = 0; z =

1�"
2�" ]; eigenvalues: �1;2 = �

1
�4"+"2+4 (2"+ "

2 � "3 � 2)

P [x = 0; y = 1
2�" ; z =

1�"
2�" ]; eigenvalues: �1;2 = �

1
�4"+"2+4 ("+ "

2 � "3 � 2)

This �xed points structure is consistent with Zeeman (1980) result that no fold cata-

strophes (i.e. multiple, isolated and interior steady states) can occur under the Replicator

Dynamics. The three saddles together with the interior source de�ne the basins of attractions

for the stable nodes at simplex vertices. The boundaries of the simplex are invariant under

Replicator Dynamics13 and it su¢ ces to show that the segment lines [OM ]; [ON ], and [OP ];

as illustrated in Fig. 5 , are also invariant under this dynamics.

13see proof in Hofbauer and Sigmund (2003) pp. 67-68.
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A (1,0,0)
B (0,1,0)
C (0,0,1)

O

B P C

M N

A

Figure 5: Coordination Game with " = 0:1 and Replicator Dynamics - Invariant manifolds

Lemma 3 The segment lines [OM ]; [ON ], and [OP ] are invariant under Replicator Dynam-

ics and they form, along with the simplex edges, the boundaries of the basins of attraction for

the three stable steady states A, B and C at the vertices.

Proof. Using the standard substitution z = 1� x� y system (23) becomes:

264 _x = x2 � x3 � xy2 � x2"+ x3"� x (�x� y + 1)2 � x" (�x� y + 1)2

_y = y2 � y3 � x2y + x2y"� y (�x� y + 1)2 � y" (�x� y + 1)2

375 (24)

Segment [MO] is de�ned, in simplex coordinates, by y = x(1� "). Along this line we have:

�
_y

_x

�
[MO]:y=x(1�")

=
x (�"+ 1)

�
x (�"+ 1)� x2 (�"+ 1)� x2 (�"+ 1)2 � ("+ 1) (�x� y + 1)2

�
x
�
x (�"+ 1)� x2 (�"+ 1)� x2 (�"+ 1)2 � ("+ 1) (�x� y + 1)2

�
= 1� ";

which is exactly the slope of [MO]. Similarly, invariance results are obtained for segments

[ON ] and [OP ] de�ned by x(1� ") = z(1 + ") and y = z(1 + "):

Analytically, the size of the basins of attraction of the three di¤erent stable nodes are
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"nA A(1; 0; 0) B(0; 1; 0) C(0; 0; 1) Long-Run Average Welfare
0 33:33% 33:33% 33:33% 1
0:1 29:9% 33:2% 36:7% 1:0048
0:5 15:5% 30:3% 54:54% 1:1986
0:6 8:92% 12:18% 78:90% 1:419 9
0:9 1:2% 12% 86:7% 1:512

Table 1: Coordination Game, Replicator Dynamics�relative sizes of basins of attraction of 3
stable steady states and long-run average welfare for di¤erent payo¤-perturbation parameter
". As payo¤ di¤erences " increases the long-run average welfare increases

determined by the areas of the polygons delineated by the invariant manifolds [OM ]; [ON ],

and [OP ] and the 2-dim simplex boundaries. These areas are given by:

A(1; 0; 0) = A[AMON ] =

266664
���18 p32�" � 1

4

p
33�2"
4�2" �

1
8

p
3 "+1
3�"2 +

1
4

p
3 3�"
6�2"2 �

1
4

p
3

2�"
3�"
6�2"2

���
+
���14p3 ("+ 1) 3�2"

(4�2")(3�"2) +
1
8

p
3

2�" �
1
4

p
3

4�2" �
1
8

p
3 "+1
3�"2

���
+
���14p3 3�"

6�2"2 +
1
4

p
3 "+1
(4�2")(3�"2) �

1
4

p
3

2�"
3�"
6�2"2

���

377775
B(0; 1; 0) = A[BMOP ] =

���14p3 "+1
(4�2")(3�"2) �

1
4

p
3

2�"
3�"
6�2"2

���+ ���14p3 ("+ 1) 1�"
(2�")(3�"2)

���
C(0; 0; 1) = A[CNOP ] =

��� 14p3("+1)(1�")�(1+")(2�")(3�"2) � 1
4

p
3 "+1
3�"2

���+ ���14p3 ("+ 1) 3�2"
(4�2")(3�"2)

���
The relative size of the basins vary with the payo¤ parameter " as in Table 1. When

the payo¤ asymmetries are small, i.e. " is small, the simplex of initial conditions is divided

equally among the three stable equilibria(Fig. 6a). As the payo¤ discrepancies increase, i.e.

when " increases the relative size of the welfare-maximizing equilibrium (0; 0; 1) increases (see

Fig. 6b).
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Figure 6: Coordination Game and Replicator Dynamics-basins of attraction for di¤erent
values of the payo¤ di¤erence "

Coordination Game and Logit Dynamics

We choose a small payo¤ perturbation, " = 0:1; such that system is �close�to the symmetric

basins of attraction A,B and C in the Replicator Dynamics. With this perturbation size, the

Logit Dynamics for the payo¤ matrix A of the Coordination game (22) de�nes the following

vector �eld on the simplex of frequencies (x; y; z) of strategies E1; E2; E3, respectively:

266664
_x = exp(0:9�x)

exp(0:9�x)+exp(�y)+exp(1:1�z)
� x

_y = exp(�y)
exp(0:9�x)+exp(�y)+exp(1:1�z)

� y

_z = exp(1:1�z)
exp(0:9�x)+exp(�y)+exp(1:1�z)

� z

377775 (25)

Multiple Equilibria. In order to ascertain the number of (asymptotically) stable �xed

points on the two-dimensional simplex we �rst run simulations for increasing values of � and

for di¤erent initial conditions within the simplex as illustrated in Fig. 7.

Case I. Low values of �; � � 0 (Fig. 7a). One interior steady state, the barycentrum is
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globally attracting, i.e. irrespective of the initial proportions, the population will settle down

to a state with almost equal fractions.

Case II. High values of �; � � 10 (Fig. 7d-f). Three co-existing stable steady states

asymptotically approaching the vertices of the simplex as � increases. The size of their basins

of attraction is determined both by the strategy relative payo¤ advantage and by the value of

the intensity of choice. The initial fractions of the strategies are important for which strategy

will eventually win the evolutionary competition.

Case III. Intermediate values of �; � = 3 (Fig. 7bc). Co-existence of two steady-states

for moderate values of the sensitivity to payo¤s di¤erentials parameter, with di¤erent initial

population mixtures converging to di¤erent steady states.
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(c) � = 3, (x0; y0; z0) = (0:5; 0:3; 0:2)
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(d) � = 10, (x0; y0; z0) = (0:4; 0:3; 0:3)
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(e) � = 10, (x0; y0; z0) = (0:25; 0:4; 0:35)
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Figure 7: Coordination Game[" = 0:1] and Logit Dynamics -Unique stable steady state for �
low (Panel(a)), two interior, isolated stable steady states for moderate � (Panels (b)-(c)) and
three, co-existing stable steady states for high � = 10 (Panels (d)-(f)).
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Bifurcations. Unlike Replicator, the Logit Dynamics displays multiple, interior isolated

steady states created via a fold bifurcation. In a 3-strategy Coordination game, three interior

stable steady states emerge through a sequence of two saddle-node bifurcations, as illustrated

in Fig. 8.

For small values of � the unique, interior stable steady state is close to the simplex

barycentrum (1=3; 1=3; 1=3). As � increases this steady state travels14 in the direction of

the Pareto-superior equilibrium (0; 0; 1). A �rst fold bifurcation occurs at � = 2:77 (see Fig.

8a) and two new �xed points are created, one stable and one unstable. If we increase � even

further (� � 3:26) a second fold bifurcation takes place and two additional equilibria emerge,

one stable and one unstable. Finally, two new �xed points arise at � = 4:31 via a saddle-source

bifurcation15. Three stable steady states co-exist for large values of the intensity of choice �.

Note that the three stable steady states coincide with the �logit equilibria�of McKelvey and

Palfrey (1995) that converge to the pure strategy Nash equilibria when � ! 1. A similar

sequence of bifurcations is visible in the payo¤ parameter space (Fig. 8b) where, for a �xed

value of the intensity of choice, a sequence of fold bifurcations occur in which steady states

collide and disappear as the payo¤ di¤erence " increases. Hence, in the Logit Dynamics for

a given "rationality level" �; a unique stable steady state, approaching the Pareto-optimal

steady state, will arise when the payo¤ di¤erence " is su¢ ciently large.

14We point out an interesting similarity with Turocy (2005) "homotopy" method of tracing logit equilibria in
normal form games. He shows that, generically, there is unique branch connecting the barrycentrum for � = 0
and a unique equilibrium - the Pareto-dominant equilbrium (0; 0; 1) in our simple 3�3 pure Coordination game
- as � ! 1: This homotopy-based branch coincides with the lower branch of our numerically "continued"
equilibria (see the bottom (x; �) bifurcation curve in Fig. 8a). Thus, a bifurcation-based method of computing
equibria in normal form games may be an alternative to the homotopy method.
15A saddle-source bifurcation it is a fold bifurcation where two unstable steady states are created: one

saddle �xed point (i.e. at least one eigenvalue with positive real part) and one source (i.e. both eigenvalues
have positive real part).

27



2 2.7 3.2 4.3 6 7
0

0.2

0.4

0.6

0.8

1

β

x

LP

LP

LP

(a) Cascade of Fold bifurcations in
(x,�) space. "=0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε

x

LP HH

H
LP

LP

LP

H

H

LP

(b) Cascade of Fold bifurcations in (x,")
space. �=5.

Figure 8: Coordination Game and Logit Dynamics. Curves of equilibria along with codimen-
sion I singularities, in this case fold catastrophe (LP) points. Panel (a): the multiplicity of
steady states arises through a sequence of three fold bifurcations when � increases. Panel
(b): two fold bifurcations in which steady states collide and disappear as payo¤ parameter "
increases.

The continuation of the fold curves in the (�; ") parameter space allows the detection of

codimension II16 bifurcations. Co-dimension II bifurcation points are important, because they

act as "organizing centers" of the complete bifurcation diagram with co-dimension I bifurc-

ation curves. Thus, the cusp points (CP) in Fig. 9 organize the entire bifurcating scenario

and are endpoints of the saddle-node bifurcation curves along which multiple, interior steady

states are created in the Coordination Game under the smoothed best response dynamics.

When a fold bifurcation curve is crossed from below two additional equilibria are created: one

stable and one unstable after a saddle-node bifurcation and two unstable steady states after

a saddle-source bifurcation. If choice is virtually random (� � 0) there is an unique steady

state while if � increases, the number of steady states increases from 1 to 3, then from 3 to 5

and, last, from 5 to 7.

16The codimension of a bifurcation de�nes the number of parameters that needs to be varied in order for
the bifurcation to occur generically (Kuznetsov (1995) ).
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Figure 9: Coordination Game and Logit Dynamics. Curves of fold bifurcations along with
detected codimension II singularities - in this case, cusp (CP) points - traced in the ("; �)
parameter space. The co-dimension II bifurcation points act as "organizing centers" of the
fold bifurcation curves. As the intensity of choice increases, the number of steady states
increases from 1 to 3, then from 3 to 5 and, last, from 5 to 7.

Basins of Attraction. The numerical computation of the basins of attraction for di¤erent

equilibria reveals interesting properties of the Logit dynamics from a social welfare perspective.

We construct a measure of long-run aggregate welfare as the payo¤ at the stable steady state

weighted by the size of the corresponding basin of attraction. While for � !1 the basins of

attraction are similar in size as in the Replicator Dynamics (Panels (a), (c), (d) in Fig. 10),

for moderate levels of rationality the population manages to coordinate close to the Pareto

optimal Nash equilibria (Panel (b) in Fig. 10).
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(d) � = 15; three stable steady
states

Figure 10: Coordination Game [" = 0:1] and Logit Dynamics: Panels (a)-(d), basins of
attraction for increasing values of the intensity of choice �. Fractions converging to each of
the steady state are indicated in the box.

Fig. 11 illustrates how the long-run average welfare depends on the parameter � for

di¤erent levels of the payo¤ di¤erence ". Long run average welfare increases with the payo¤

di¤erence " but evolves non-monotonically with respect to the behavioural parameter � (Fig.

11ab). Long-run average welfare increases as the fully mixed equilibrium moves towards the

Pareto optimal (0; 0; 1) vertex, attains a maximum just before the �rst fold bifurcation occurs
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at �LP1 = 2:77 and then decreases, approaching the Replicator Dynamics average welfare, in

the limit of � ! 1. As our measure of average welfare is constructed as payo¤s at steady

state weighted by the corresponding sizes of basins of attraction, there are two e¤ects driving

the welfare peak before �LP1 is hit. First, the steady state payo¤ is higher the closer the

steady state is to the Pareto optimal equilibrium. Second, there is a �basin of attraction�

e¤ect: before the �rst fold bifurcation threshold � = �LP1 is reached the entire simplex is

attracted by the unique steady state lying close to the optimal equilibrium. Intuitively, the

noisy choices in the low-beta regime help players escape the path-dependency built into the

game and coordinate close to the Pareto-optimal equilibrium.

In the limiting case � ! 1; the stable �xed points of the Logit Dynamics (i.e. the logit

equilibria) coincide with the pure strategy Nash equilibria of the underlying game which,

for this Coordination Game, are exactly the stable nodes of the Replicator Dynamics. Thus

the analysis (stable �xed points, basins�of attraction sizes) of the �unbounded�rationality

case is identical to the one pertaining to the Replicator Dynamics in Coordination game (see

subsection (5)).
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Figure 11: Coordination Game and Logit Dynamics-Long-run average welfare plots as func-
tion of payo¤ perturbation parameter " and the intensity of choice �. As " increases the long-
run average welfare increases. The long-run average welfare is non-monotonic as a function
of the intensity of choice �, with the maximum arising just before the �rst fold bifurcation.
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6 Weighted Logit Dynamics(wLogit)

As stable limit cycles arise in 3-strategy game under Logit Dynamics, a natural question arises

whether more complicated behavior could also occur. One needs a four strategy game to get a

proper three dimensional continuous-time evolutionary system which is the minimum dimen-

sion that may generate chaotic behavior. In this last section we run computer simulations

for a four-strategy Schuster et al. (1991) example , from the perspective of a di¤erent type of

evolutionary dynamics closely related to the Logit dynamics, namely the frequency-weighted

Logit:

_xi =
xi exp[�Ax)i]P
k xi exp[�Ax)k]

� xi; � = ��1 (26)

This evolutionary dynamic has the appealing property that when � approaches 0 it con-

verges to the Replicator Dynamics (with adjustment speed scaled down by a factor �) and

when the intensity of choice is very large it approaches the Best Response dynamic (Hofbauer

and Weibull (1996)). Schuster et al. (1991) derive the following payo¤matrix from models of

biological interaction:

A =

0BBBBBBB@

0 0:5 �0:1 0:1

1:1 0 �0:6 0

�0:5 1 0 0

1:7 + � �1� � �0:2 0

1CCCCCCCA
(27)

The Logit dynamics on this payo¤ matrix "only" displays stable periodic behavior for

intermediate values of the intensity of choice �. The vector �eld generated by the weighted

Logit dynamics (26) along with the underlying game matrix (27) is investigated numerically

in the sequel. Schuster et al. (1991) show that, within a speci�c payo¤ parameter region [

�0:2 < � < �0:105]; a Feigenbaum sequence of period doubling bifurcations unfolds under the

Replicator Dynamics and, eventually, chaos sets in. Here we consider the question whether

the weighted version of the Logit Dynamics displays similar patterns, for a given payo¤

perturbation �; when the intensity of choice � is varied. First we �x � to �0:2 (the value for
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which the Replicator generates �only�periodic behaviour in Schuster et al. (1991)) and run

computer simulations for di¤erent �:Cycles of increasing period multiplicity are reported in

Fig. 12ad. For � = 2:5 the wLogit Dynamics already enters the chaotic regime on a strange

attractor (Fig. 12ef).

33



(a) � = 0:48: period�1 cycle (b) � = 1: period�2 cycle

(c) � = 2:1: period�4 cycle (d) � = 2:2: period�8 cycle

(e) Strange attractor (f) Strange attractor

Figure 12: Schuster et. al. (1991) game and wLogit Dynamics. Period-Doubling route to
chaos. Panels (a)-(d): cycles of increasing period are obtained if the intensity of choice �
increases. Panels (e)-(f): projections of the strange attractor onto 2 two-dimensional state
subspace.

34



7 Conclusions

The main goal of this paper was to show that, even for �simple�three-strategy games, periodic

attractors do occur under a rationalistic way of modelling evolution in games, the Logit

dynamics. The resulting dynamical systems were investigated with respect to changes in both

the payo¤ and behavioral parameters. Identifying stable cyclic behaviour in such a system

translates into proving that a generic, non-degenerate Hopf bifurcation occurs. By means of

normal form computations, we showed �rst that a non-degenerate Hopf can not occur for

Replicator Dynamics, when the number of strategies is three for games like Rock-Scissors-

Paper. In these games, under the Replicator Dynamics, only a degenerate Hopf bifurcation

can occur. However, in Logit dynamics, even for the three strategy case, stable cycles are

created, via a generic, non-degenerate, supercritical Hopf bifurcation. Another �nding is

that the periodic attractors can be generated either by varying the payo¤ parameters ("; �)

or the behavioral parameter intensity of choice (�). Moreover, via numerical detection of

bifurcation curves in a Coordination game, under the Logit Dynamics we showed that display

multiple, isolated, interior steady states exist, created by a fold catastrophe, a bifurcation

which cannot occur under the Replicator. Interestingly, a measure of aggregate welfare reaches

a maximum only for intermediate values of �; just before the �rst fold catastrophe, when most

of the population manages to coordinate close to the Pareto-superior equilibrium. Last, in

a frequency-weighted version of Logit dynamics and for a 4� 4 game, period-doubling route

to chaos along with strange attractors emerged when the intensity of choice took moderate,

�boundedly rational� values. An interesting topic for future research is to run laboratory

experiments with human subjects to �nd out which evolutionary selection dynamics - either

an imitation-based, in the spirit of Replicator or a more involved, belief-based dynamics a la

Logit - is more relevant for players actual learning behavior.
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Appendix A: Rock-Scissor-Paper game with Logit Dynamics:

Computation of the �rst Lyapunov coe¢ cient

In order to discriminate between a degenerate and a non-degenerate bifurcations we need

to compute the �rst Lyapunov coe¢ cient. For this, we �rst use equations (8) to obtain the

nonlinear functions:

f1(x; y) = y
p
3
"+ �

"� � � x+
exp

�
6(y��"(�x�y+1))

��+"

�
exp

�
6(x��y")
��+"

�
+ exp

�
6(�x"+�(�x�y+1))

��+"

�
+ exp

�
6(y��"(�x�y+1))

��+"

�
f2(x; y) = �x

p
3
"+ �

"� � � y +
exp

�
6(�x"+�(�x�y+1))

��+"

�
exp

�
6(x��y")
��+"

�
+ exp

�
6(�x"+�(�x�y+1))

��+"

�
+ exp

�
6(y��"(�x�y+1))

��+"

�

Next, applying formula (10) for the computation of the �rst Lyapunov coe¢ cient, we

obtain after some further simpli�cations:

l1("; �) =

�
1728�"� 4320�2 � 4320"2 � 4320�"+ 1728�2 + 1728"2

19�2 � 38�"+ 19"2 � 16�"+ 8�2 + 8"2

�
=
�2592�"� 2592�2 � 2592"2

27�2 � 54�"+ 27"2

= �2592�"+ �
2 + "2

3(3"� 3�)2 < 0:
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