112 research outputs found

    Multiphoton Quantum Optics and Quantum State Engineering

    Full text link
    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.Comment: 198 pages, 36 eps figure

    Interaction of bimodal fields with few-level atoms in cavities and traps

    Get PDF
    The spectacular experimental results of the last few years in cavity quantum electrodynamics and trapped ions research has led to very high level laboratory performances. Such a stimulating situation essentially stems from two decisive advancements. The first is the invention of reliable protocols for the manipulation of single atoms. The second is the ability to produce desired bosonic environments on demand. These progresses have led to the possibility of controlling the form of the coupling between individual atoms and an arbitrary number of bosonic modes. As a consequence, fundamental matter-radiation interaction models like, for instance, the JC model and most of its numerous nonlinear multiphoton generalizations, have been realized or simulated in laboratory and their dynamical features have been tested more or less in detail. This topical paper reviews the state of the art of the theoretical investigations and of the experimental observations concerning the dynamical features of the coupling between single few-level atoms and two bosonic modes. In the course of the paper we show that such a configuration provides an excellent platform for investigating various quantum intermode correlation effects tested or testable in the cavity quantum electrodynamics and trapped ion experimental realms. In particular we discuss a mode-mode correlation effect appearing in the dynamics of a two-level atom quadratically coupled to two bosonic modes. This effect, named parity effect, consists in a high sensitivity to the evenness or oddness of the total number of bosonic excitations.Comment: Topical Review. To appear on J. Mod. Op

    Journeys from quantum optics to quantum technology

    Get PDF
    Sir Peter Knight is a pioneer in quantum optics which has now grown to an important branch of modern physics to study the foundations and applications of quantum physics. He is leading an effort to develop new technologies from quantum mechanics. In this collection of essays, we recall the time we were working with him as a postdoc or a PhD student and look at how the time with him has influenced our research

    The SLH framework for modeling quantum input-output networks

    Full text link
    Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, eg. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H)(S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.Comment: 60 pages, 14 figures. We are still interested in receiving correction

    Quantum light for quantum technologies

    Get PDF
    In this thesis we will theoretically investigate three potentially useful physical systems, after first developing the theoretical framework necessary for studying them. First, we will study the multiphoton absorption properties of maximally path entangled number (N00N) states. This is directly relevant to quantum lithography, and beating the Rayleigh diffraction limit. Next, we will develop a new scheme for quantum interferometry: dubbed coherent-light boosted super-sensitive quantum interferometry, which has the potential to reach below the shot noise limit for high photon fluxes, and requires no esoteric detection protocol, or technological elements that have yet to be developed. Finally we propose a method to perform parity detection on the output modes of a Mach-Zehnder interferometer that has been fed with two-mode squeezed vacuum. This detection scheme relies on a double homodyning technique, that makes intensity correlation measurements at a series of chosen bias phases. Sub-Heisenberg sensitivity scaling is expected for this setup

    Quantum Optical Metrology, Sensing and Imaging

    Get PDF
    In this dissertation we begin with a brief introduction to quantum optics concentrating on the topics of the noise of quantum optical states, quantum estimation theory, quantum interferometry and the atom-field interaction. This background is necessary for understanding the discussions in later chapters. In particular, quantum interferometry, which is optical interferometry when the light source is a quantum mechanical state, plays a central role in this dissertation. In Chapter 2 we discuss the phase estimation sensitivity of quantum metrology when photon loss is present. In Chapter 3 we extend the discussion to include the phase fluctuation of the system caused by the environment. We model our metrological system with the Mach-Zehnder interferometer (MZI) and use a light field in the symmetric number-path entangled state as the source. In both chapters we use the parity operator as the detection scheme and show that it is optimal under pure dephasing. In Chapter 4 we discuss the application of quantum optical states in remote sensing and propose a new scheme for a quantum radar. Again, our scheme consists of a MZI and a coherent light source. It is shown that using only coherent states of light and quantum homodyne detection, super-resolving ranging and angle determination are achievable. Chapter 5 is devoted to the generation of a super-resolving single-photon number-path entangled state which may serve as a proof-of-principle prototype for quantum lithography. The repeated implementation of MZIs is shown to be able to remove photons coherently from both modes of a symmetric number-path entangled state with arbitrarily high photon number. Lastly, in Chapter 6 we introduce the phenomenon known as polarization self-rotation and discuss its potential in generating a squeezed vacuum state, which has a huge impact in quantum interferometry

    Control of Light-Matter Interactions in Classical and Quantum Optics

    Get PDF
    In this thesis, we examined a series of techniques for controlling the interaction of light with matter that could be employed to optimize or to control physical phenomena in various potential applications. Some of these schemes are described with classical electrodynamic theory while others require a semi-classical or full quantum framework. In Ch.(2), we study numerically two implementations of stretchable photonic crystals (SPCs) embedded in elastic polymers. Our analysis, which classifies the bandgaps in terms of two simply determined parameters, indicates that such structures exhibit bandgaps that can be readily adjusted by straining the polymer. In Ch.(3), we considered a five-level atomic system in a dense gas interacting with two low-intensity fields. By examining the influence of different parameters on the refraction index we found that by adjusting the ratio of the two magnetic amplitudes associated with the fields the effects of atomic coherence can be simply controlled. As well, a negative index of refraction can be achieved and controlled over a wide wavelength range with minimal absorption. In Ch.(4), we theoretically investigated the double Lambda scheme inside a Fabry-Perot cavity. By introducing a weak probe beam and two strong driving fields and employing an incoherent pumping mechanism we found that when the intensity of the two driving fields are equal, a single giant white band was generated. However, when they are not equal, three white bands can be present in one cavity. This procedure can also be employed to displace the center frequency of the white band. In Ch.(5), we studied the interaction of a N-type four-level atom with a single field in the presence of an intensity-dependent coupling in a nonlinear Kerr medium. The exact analytic solution is obtained in the case that the atom and electromagnetic field are initially in a higher excited state and a coherent state, respectively. It is then demonstrated that nonclassical properties such as the degree of entanglement stabilization, Kerr medium nonclassical control, and squeezed light can be more efficiently realized and controlled within this four-level framework than in many competing procedures. Finally, in Ch.(6), we theoretically studied the superposition of two nearly identical coherent states. This ``near coherent'' state exhibits numerous nonclassical properties such as sub-Poissonian statistics, squeezing for certain relative phases of the superposition and a partially negative Wigner function

    The resurgence of the linear optics quantum interferometer — recent advances & applications

    Full text link
    © 2019 Linear optics has seen a resurgence for applications in quantum information processing owing to its miniaturisation on-chip, and increase in production efficiency and quality of single photons. Time-bin encodings have also become feasible owing to architectural breakthroughs, and new processing capabilities. Theoretical efforts have found new ways to implement universal quantum computations with linear optics requiring less resources, and to demonstrate the capabilities of linear optics without requiring a universal optical quantum computer
    corecore