49,352 research outputs found
Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover
Understanding spatial variation in the structure and stability of plant-pollinator networks, and their relationship with anthropogenic drivers, is key to maintaining pollination services and mitigating declines. Constructing sufficient networks to examine patterns over large spatial scales remains challenging. Using biological records (citizen science), we constructed potential plant-pollinator networks at 10km resolution across Great Britain, comprising all potential interactions inferred from recorded floral visitation and species co-occurrence. We calculated network metrics (species richness, connectance, pollinator and plant generality) and adapted existing methods to assess robustness to sequences of simulated plant extinctions across multiple networks. We found positive relationships between agricultural land cover and both pollinator generality and robustness to extinctions under several extinction scenarios. Increased robustness was attributable to changes in plant community composition (fewer extinction-prone species) and network structure (increased pollinator generality). Thus, traits enabling persistence in highly agricultural landscapes can confer robustness to potential future perturbations on plant-pollinator networks
The macroeconomic cost of catastrophic pollinator declines
We develop a computable general equilibrium (CGE) approach to assess the macroeconomic impacts of productivity shocks due to catastrophic losses of pollination ecosystem services at global and regional scales. In most regions, producers of pollinator dependent crops end up benefiting because direct output losses are outweighed by increased prices, while non-agricultural sectors experience large adverse indirect impacts, resulting in overall losses whose magnitudes vary substantially. By comparison, partial equilibrium analyses tend to overstate the costs to agricultural producers, understate aggregate economy-wide losses, and overstate the impacts on consumers' welfare. Our results suggest an upper bound on global willingness to pay for agricultural pollination services of 152 billion
Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project
Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.stepproject.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales
Investigations into stability in the fig/ fig-wasp mutualism
Fig trees (Ficus, Moraceae) and their pollinating wasps (Chalcidoidea, Agaonidae) are
involved in an obligate mutualism where each partner relies on the other in order to
reproduce: the pollinating fig wasps are a fig tree’s only pollen disperser whilst the fig
trees provide the wasps with places in which to lay their eggs. Mutualistic interactions
are, however, ultimately genetically selfish and as such, are often rife with conflict. Fig
trees are either monoecious, where wasps and seeds develop together within fig fruit
(syconia), or dioecious, where wasps and seeds develop separately. In interactions
between monoecious fig trees and their pollinating wasps, there are conflicts of interest
over the relative allocation of fig flowers to wasp and seed development. Although fig
trees reap the rewards associated with wasp and seed production (through pollen and
seed dispersal respectively), pollinators only benefit directly from flowers that nurture
the development of wasp larvae, and increase their fitness by attempting to oviposit in
as many ovules as possible. If successful, this oviposition strategy would eventually
destroy the mutualism; however, the interaction has lasted for over 60 million years
suggesting that mechanisms must be in place to limit wasp oviposition.
This thesis addresses a number of factors to elucidate how stability may be
achieved in monoecious fig systems. Possible mechanisms include: 1) a parasitoidcentred
short ovipositor hypothesis in Ficus rubiginosa, which suggests that a subset of
flowers are out of reach to parasitoid ovipositors making these ovules the preferred
choice for ovipositing pollinators and allowing seeds to develop in less preferred ovules;
2) the presence of third-party mutualists such as non-pollinating fig wasps (F. burkei)
and patrolling green tree ants on the fig surface (F. racemosa) that limit pollinator and
parasitoid oviposition respectively; and 3) selection on fig morphology which constrains
the size (and therefore fecundity) of the associated pollinators. I discuss the lack of
evidence for a single unifying theory for mutualism stability and suggest that a more
likely scenario is the presence of separate, and perhaps multiple, stabilising strategies in
different fig/ fig-wasp partnerships
The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands
1. Attempts to restore damaged ecosystems usually emphasize structural aspects of biodiversity, such as species richness and abundance. An alternative is to emphasize functional aspects, such as patterns of interaction between species. Pollination is a ubiquitous interaction between plants and animals. Patterns in plant-pollinator interactions can be analysed with a food web or complex-systems approach and comparing pollination webs between restored and reference sites can be used to test whether ecological restoration has taken place. 2. Using an ecological network approach, we compared plant-pollinator interactions on four pairs of restored and ancient heathlands 11 and 14 years following initiation of restoration management. We used the network data to test whether visitation by pollinators had been restored and we calculated pollinator importance indices for each insect species on the eight sites. Finally, we compared the robustness of the restored and ancient networks to species loss. 3. Plant and pollinator communities were established successfully on the restored sites. There was little evidence of movement of pollinators from ancient sites onto adjacent restored sites, although paired sites correlated in pollinator species richness in both years. There was little insect species overlap within each heathland between 2001 and 2004. 4. A few widespread insect species dominated the communities and were the main pollinators. The most important pollinators were typically honeybees (Apis mellifera), species of bumblebee (Bombus spp.) and one hoverfly species (Episyrphus balteatus). The interaction networks were significantly less complex on restored heathlands, in terms of connectance values, although in 2004 the low values might reflect the negative relationship between connectance and species richness. Finally, there was a trend of restored networks being more susceptible to perturbation than ancient networks, although this needs to be interpreted with caution. 5. Synthesis and applications. Ecological networks provide a powerful tool for assessing the outcome of restoration programmes. Our results indicate that heathland restoration does not have to occur immediately adjacent to ancient heathland for functional pollinator communities to be established. Moreover, in terms of restoring pollinator interactions, heathland managers need only be concerned with the most common insect species. Our focus on pollination demonstrates how a key ecological service can serve as a yardstick for judging restoration success
Global Trends in the Status of Bird and Mammal Pollinators
Biodiversity is declining, with direct and indirect effects on ecosystem func-tions and services that are poorly quantified. Here, we develop the first globalassessment of trends in pollinators, focusing on pollinating birds and mam-mals. A Red List Index for these species shows that, overall, pollinating birdand mammal species are deteriorating in status, with more species movingtoward extinction than away from it. On average, 2.5 species per year havemoved one Red List category toward extinction in recent decades, represent-ing a substantial increase in the extinction risk across this set of species. Thismay be impacting the delivery of benefits that these species provide to people.We recommend that the index be expanded to include taxonomic groups thatcontribute more significantly to pollination, such as bees, wasps, and butter-flies, thereby giving a more complete picture of the state of pollinating speciesworldwide
The role of pollinator attracting scent in the sexually deceptive orchids Ophrys chestermanii, O. normanii and O. tenthredinifera
Sexual deception of male bees is one of the most remarkable mechanisms of pollination (Ackermann 1986, Proctor & al. 1996). Flowers of the orchid genus Ophrys mimic females of their pollinator species, usually bees and wasps, to attract males, which try to copulate with the flowers. During this so-called “pseudocopulation” the male removes the pollinia and transfers them to another flower to ensure pollination. Apart from visual and tactile cues, floral scent was shown to be most important for eliciting mating behaviour in males (Kullenberg 1961, Schiestl & al. 1999, Ayasse & al. 2003). Pollination in Ophrys is highly specific and usually each Ophrys species attracts only one pollinator species (Paulus & Gack 1990). The high degree of specialization provides the means of reproductive isolation between the intercrossable Ophrys-species (Ehrendorfer 1980). The complex odour-bouquets released by the flowers are species-specific and often consist of more than 100 different chemical compounds (Borg-Karlson & al. 1985, Ayasse 2006). Speciation in Ophrys-orchids may be brought about by changes in the pollinator attracting floral scent. The attraction of a new pollinator may act as a pre-zygotic isolation barrier (Stebbins 1970, Paulus & Gack 1990, Soliva & al. 2001). We investigated three sympatrically occuring Ophrys-species on Sardinia. O. chestermanii and O. normanii are endemic and are both pollinated by males of the bumblebee B. vestalis. O. tenthredinifera is pollinated by Eucera nigrilabris. There are different opinions concerning the taxonomic status of O. normanii. It has been described as an actual hybrid between O. chestermanii and O. tenthredinifera (Wood 1983). Paulus & Gack (1995) suggested that it is an own species, that either has developed from a hybrid between O. chestermanii and O. normanii or that has evolved by radiation from O. tenthredinifera. By conducting behavioural-tests with B. vestalis males, performing gas chromatographic analyses and electrophysiological studies we wanted to identify pollinator attracting scent and to clarify the taxonomic status of O. normanii.Sexualtäuschorchideen der Gattung Ophrys (Orchidaceae) imitieren die Weibchen ihrer Bestäuber in Duft, Form und Farbe. Insektenmännchen versuchen mit dem Labellum der Blüte zu kopulieren und transportieren den Pollen von Blüte zu Blüte, wodurch die Orchidee bestäubt wird. In dieser Arbeit untersuchten wir die Bestäuber anlockenden Duftstoffe der beiden endemisch auf Sardinien vorkommenden Arten O. normanii und O. chestermanii, die beide von Bombus vestalis Männchen (Hymenoptera: Apidae) bestäubt werden und von O. tenthredinifera, die Eucera nigrilabris (Hymenoptera: Apidae) zur Bestäubung anlockt. O. normanii wurde von Wood (1983) als Primärhybride beschrieben. Nach Paulus und Gack (1995) handelt es sich um eine hybridogene Art oder um eine Art die durch Abspaltung von O. tenthredinifera entstanden ist. Das Ziel der Untersuchungen war die Identifizierung Männchen-anlockender Verbindungen. Die Attraktivität der drei Arten für B. vestalis Männchen sollte Hinweise auf den Artstatus von O. normanii geben. In Biotests mit B. vestalis-Männchen lösten Blütenextrakte von O. normanii und O. chestermanii ebenso wie B. vestalis-Weibchen Kopulationsverhalten der Männchen aus, nicht jedoch Extrakte von O. tenthredinifera. Folglich handelt es sich bei O. normanii nicht um einen aktuellen Hybriden zwischen O. chestermanii und O. tenthredinifera. Ein Vergleich der GC-EAD-aktiven Duftbouquets mittels Diskriminanzanalyse ergab große Ähnlichkeiten zwischen O. normanii und O. chestermanii für die Substanzklassen der Ester, Alkohole und Fettsäuren, die daher vermutlich eine Schlüsselfunktion bei der Bestäuberanlockung haben
The impact of honey bees on montane ecosystems within Tongariro National Park : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Ecology at Massey University
A study of the effects of honey bees on montane ecosystems was conducted during the summers of 1993/1994 and 1994/1995 at Tongariro National Park. Three possible effects of the introduced honey bee were examined. The primary aims of the study were to identity areas with and without honey bees and to identify differences in the pollination success of a weed species, heather (Calluna vugaris) and a native species, the New Zealand flax (Phormium tenax) under different pollinator regimes, and to examine differences in the composition of native pollinator communities in these different bee areas. The impact of honey bees on the reproductive success of heather, an important weed species in Tongariro National Park was examined over two flowering seasons. Insect visitation rates on heather flowers were low at each of the four study sites. Bagging plants to exclude insect flower visitors had little effect on female fitness. The potential of other pollen vectors, wind and thrips, as pollinators of heather was also examined. Both were determined to have a negative effect on several measures of female success, including pollen deposition, pollen tube formation, and pollination levels. However it appears that none of the pollen vectors (honey bees, wind or thrips) significantly effect the overall fitness of heather in terms of the viable seed produced. The second part of the study examined the impact of honey bees on the pollination systems of a native plant species. Flax is thought to be predominantly bird pollinated, however, the floral resources are also utilised by a variety of native and introduced insect species. At some sites birds were either not present or rarely used the flowers. Seed set in flax was highest in heavily bird pollinated sites. The results also suggest, however, that flax has a flexible pollinating system that enables it to maintain a range of fruit and seed set levels under the different pollintor regimes. The abundance and diversity of insect flower visitors on manuka and Hebe stricta, two common subalpine shrubs, was highly variable between sites, and between observation periods. Some of this variation may be ascribed to differences in the weather or to altitude. However, I have shown that the abundance and diversity of diptera appears to be strongly influenced by levels of honey bee activity. This indicates that honey bees do play a role in determining the structure of pollinator communities and may be displacing a significant component of the native pollinating fauna
Recommended from our members
Pollinator limitation causes sexual reproductive failure in ex situ populations of self-compatible Iris ensata
- …
