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                                                                                    Abstract 

Fig trees (Ficus, Moraceae) and their pollinating wasps (Chalcidoidea, Agaonidae) are 

involved in an obligate mutualism where each partner relies on the other in order to 

reproduce: the pollinating fig wasps are a fig tree’s only pollen disperser whilst the fig 

trees provide the wasps with places in which to lay their eggs.  Mutualistic interactions 

are, however, ultimately genetically selfish and as such, are often rife with conflict.  Fig 

trees are either monoecious, where wasps and seeds develop together within fig fruit 

(syconia), or dioecious, where wasps and seeds develop separately.  In interactions 

between monoecious fig trees and their pollinating wasps, there are conflicts of interest 

over the relative allocation of fig flowers to wasp and seed development.  Although fig 

trees reap the rewards associated with wasp and seed production (through pollen and 

seed dispersal respectively), pollinators only benefit directly from flowers that nurture 

the development of wasp larvae, and increase their fitness by attempting to oviposit in 

as many ovules as possible.  If successful, this oviposition strategy would eventually 

destroy the mutualism; however, the interaction has lasted for over 60 million years 

suggesting that mechanisms must be in place to limit wasp oviposition.   

 

 This thesis addresses a number of factors to elucidate how stability may be 

achieved in monoecious fig systems.  Possible mechanisms include: 1) a parasitoid-

centred short ovipositor hypothesis in Ficus rubiginosa, which suggests that a subset of 

flowers are out of reach to parasitoid ovipositors making these ovules the preferred 

choice for ovipositing pollinators and allowing seeds to develop in less preferred ovules; 

2) the presence of third-party mutualists such as non-pollinating fig wasps (F. burkei) 

and patrolling green tree ants on the fig surface (F. racemosa) that limit pollinator and 

parasitoid oviposition respectively; and 3) selection on fig morphology which constrains 

the size (and therefore fecundity) of the associated pollinators.  I discuss the lack of 

evidence for a single unifying theory for mutualism stability and suggest that a more 

likely scenario is the presence of separate, and perhaps multiple, stabilising strategies in 

different fig/ fig-wasp partnerships. 
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1.1 The study of mutualisms  

“No man is an island, entire of itself”.  Written by John Donne in 1624 (Donne 

2001), this statement is also applicable in a wider context as no organism is an island 

either.  Try and imagine a species that lives in isolation from any other and you will find 

it very hard- if not impossible, because in reality species interact, often forming close 

associations, or ‘symbioses’, with one another during their lifetimes (Seckback 2002).  

These symbiotic relationships can cover a broad spectrum of interactions that can be 

loosely defined by the degree of benefit each partner receives, ranging from antagonistic 

interactions where neither partner benefits (competition) or only one does at the other’s 

expense (parasitism), to mutualistic ones where the beneficial services are traded 

between partners as a kind of ‘biological bartering’ (mutualism) (Bronstein 2001).   

That the natural world was dominated by antagonistic rather than mutualistic 

interactions was an idea that was, until recently, supported by many influential 

ecologists (Fox et al. 2001).  Nature described as being ‘red in tooth and claw’ 

reinforced this belief at the time and in 1986, the ratio of papers covering competition, 

exploitation and mutualism was 4:4:1 (May and Seger 1986).  Classic Lotka-Volterra 

models for antagonistic interactions and Gause’s competitive exclusion principle helped 

keep these ideas at the forefront of ecology-related publications for over half a decade 

(Boucher 1985; Orians 1985; but see Bronstein 1994).  Cultural bias (that cooperative 

models were absent in the socioeconomic environment), taxonomic bias (an emphasis 

on charismatic taxonomic groups not involved in mutualisms) and the idea that studies 

on cooperation were boring, were all proposed as potential explanations for the 

underrepresentation of positive interactions in the literature (Keddy 1989).  This bias is 

slowly being readdressed and more attention has been paid to mutualisms in recent 

years (Boucher 1985; Kawanabe et al. 1993; Bronstein 1994; Duchateau-Nguyen et al. 

1995; Dugatkin 1997; Bronstein 2001; Stachowicz 2001; Holland et al. 2004).  It is now 

clear that few organisms are exempt from being involved in at least one mutualism 

during their lifetimes (Janzen 1985).  Such interactions have driven the evolution of 

much of the biological diversity we observe today, and are critically important to 

ecosystem functioning.  To get an idea of the extent of their impact, let us consider a 

world suddenly without three well known mutualisms; trees and mycorrhizal fungi, 

flowers and their pollinators and legumes and nitrogen-fixing bacteria.  Without these 

interactions, there would be no animal-pollinated plants and no pollinators.  Ninety 

percent of the land plants that depend on mycorrhizal fungi would disappear and the 

remainder would be restricted to high nutrient soils.  Given that the vast majority of 
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mammalian and insect herbivores are unable to digest plant cellulose (Minkoff and 

Baker 2001), these too would disappear.  It is easy to see that even a cursory scan of a 

world without mutualisms would be unrecognisable and, if we are to agree with 

Margulis and Fester’s (1991) suggestion that all eukaryotes originated as mutualistic 

associations, all organisms with the exception of bacteria, viruses and cyanobacteria 

would fail to exist.    

 

1.2 Examples of mutualisms  

 Mutualistic interactions vary along a continuum of partner dependence with 

some partners able to survive without the other (facultative mutualisms) whilst others 

are prevented from reproducing in their partner’s absence (obligate mutualisms) (Janzen 

1985).  The exact nature of the benefits received in a mutualism (e.g. protection, 

nutrients, shelter, and dispersal) can also vary considerably (Boucher 1985).  

 

1.2.1 Pollination and seed dispersal 

Pollination involves the movement of male gametes (pollen) to female reproductive 

organs (the style and ovary) for seed development, whilst seed dispersal involves the 

movement of seeds some distance from the parent plant to limit competition for space 

and nutrients.  Both pollen and seeds can be dispersed by wind or by animal pollinators.  

Where the latter are the agents of dispersal, the plant has its pollen and seeds dispersed 

and the animal is often rewarded with food (nectar, pollen or fruit).   

 

1.2.2 Ants and acacias 

The interaction between the bull’s horn acacia, Acacia cornigera, and the acacia ant, 

Pseudomyrmex ferruginea, is one example of a mutualism which involves defence.  

Unlike other acacia, the leaves of A. cornigera do not contain the bitter tasting alkaloids 

that are often used as herbivore deterrents.  Instead, P. ferruginea workers fill this role.  

The tree provides the ants with year round housing (swollen thorns) and food (nectaries 

and Beltian bodies), whilst the ants provide the tree with 24-hour protection.  So 

effective is their protection, which involves stinging intruders and cutting back 

encroaching seedlings (Janzen 1966, 1967), that their removal results in increased 

herbivory and the eventual death of unoccupied trees (Janzen 1966).   
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1.2.3 The anemone fish and the anemone 

The mutualism between the anemone fish, Amphiprion bicinctus, and the anemone, 

Entacmaea quadricolor, also involves protection.  In the presence of large (>7cm) and 

aggressive A. bicinctus, the anemone gains defence from its main predator, the butterfly 

fish (Chaetodon fasciatus) whilst A. bicinctus receives enemy-free space from its 

predators and a nest site to lay its eggs (Porat and Chadwish-Furman 2004).  In the 

absence of A. bicinctus, anemone retreat completely into reef cavities which minimises 

attack from predators, but also limits the anemone’s feeding and photosynthesis which 

can lead to its shrinkage and eventual death (Porat and Chadwish-Furman 2004).   

 

1.3 The paradox of the mutualism 

Despite differences in the precise nature of individual interactions, all 

mutualisms depend on maintained cooperation from both parties.  Natural selection, 

however, acts selfishly (Krebs and Davies 1993) and favours individuals that reap the 

rewards associated with a mutualism whilst reciprocating little, or nothing, in return.  

Individuals involved in mutualistic interactions should therefore be under strong 

selection to cheat, destabilising the interaction and transforming it into one that is 

parasitic.  Despite this, mutualisms are often stable over evolutionary timescales.  How 

such long-term stability is maintained is a topic of continued and considerable debate 

(e.g. Pellmyr and Huth 1994; West et al. 2002; Holland et al. 2004; Dunn et al. 2008b). 

 

1.4 The fig/ fig-wasp interaction 

 The 60 million year old interaction between fig trees (Ficus, Moraceae) and their 

pollinating wasps (Hymenoptera, Agaonidae) (Rønsted et al. 2005) is the archetypal 

example of an obligate mutualism.  The trees produce fruit (figs or ‘syconia’), each one 

an enclosed inflorescence.  The inner cavity of each syconium is lined with tens or 

hundreds of tiny flowers (depending on the species) which never see daylight, but 

provide fig wasps with nest sites and nurseries for their developing larvae.  The wasps in 

turn, are the fig tree’s exclusive pollen vectors.  The life-cycle begins when a syconium 

reaches a receptive period early on in its development (‘B stage’, sensu Galil and 

Eisikowitch 1968a), triggered by the opening of a small hole (the ostiole) located on the 

underside of each fruit.  Female pollinators, attracted by volatile chemicals released 

from the ostiole (Grison-Pigé et al. 2002; Ware et al. 1993) crawl through the hole 

(Figure 1.1(1)), and travel through the narrow tunnel that connects the ostiole to the 

inner syconium cavity, often losing their wings and their antennae as they do so 
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(Grison-Pigé et al. 2002; Grafen and Godfray 1991; van Noort 2004). Once entered, 

syconia become less receptive to wasp entry (Khadari et al. 1995) and the closing of the 

ostiole limits the total numbers of females (now called ‘foundresses’) gaining entry 

whilst also entombing those that have been successful.  With the end of their lives 

drawing near, foundresses work quickly to pollinate flowers and oviposit in as many 

ovules as possible before their death (Figure 1.1(2)).  Their offspring are herbivorous 

and grow within galled ovules (C stage), surviving on the seed tissue as they develop 

(Figure 1.1(3)).  Weeks later (D stage), male pollinators emerge from their galls (Figure 

1.1(4)) and search for those containing females.  Biting holes in the tops of these galls, 

they mate through the holes, later enlarging them as females are unable to emerge 

unaided (Zammit and Schwarz 2000).  The wall of the syconium is then punctured with 

one or more emergence holes (depending on the species) chewed out by the male 

pollinators.  The mated females then collect pollen (actively or passively) released from 

male flowers (Figure 1.1 (5)) and disperse, restarting the cycle (Figure 1.1 (6)).  After 

wasp emergence, the syconium ripens completely (E stage) often changing in colour and 

scent and becoming more attractive to its seed-dispersing frugivores (Bonacorrso 1979; 

Milton et al. 1982; Kalko et al. 1996).  

                  

Figure 1.1 The key stages of the fig- wasp life cycle including: (1) syconium receptivity, (2) 

foundress oviposition, (3) larval development, (4) wasp emergence, (5) anther dehiscence, and 

(6) wasp dispersal and final fig ripening.  Adapted from: 

http://www.britannica.com/EBchecked/topic-art/206044/19378/The-life-cycle-of-the-fig-wasp. 

 

1.4.1 Morphological adaptations of pollinating fig wasps 

 The ostiole is the point of entry for pollinating wasps attempting to oviposit 

within fig flowers.  Consequently, its size and structure can impose strong selection 

pressures on the size and shape of pollinating wasps attempting to enter.  This is no 

more apparent than in the extreme sex-specific morphological adaptations of pollinators 

where female wasps exhibit flattened heads and bodies (Figure 1.2 A), large and easily 
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detachable wings and antennal segments, and mandibular appendages covered in ventral 

lamellae that help pull their bodies into the inner syconial cavity (van Noort and 

Compton 1996).  Males, in contrast, are born and die within their natal fig and, as they 

do not enter syconia through the ostiole, they share few morphological similarities with 

their sisters (Figure 1.2 B).  Instead, they are apterous with vestigial eyes, antennae and 

tarsae and posses long genitalia to mate with females still in their galls.   

   

 

Figure 1.2  Morphological adaptations associated with (A) female (Pleistodontes froggatti) and 

(B) male (P. imperialis) agaonid fig wasps. Drawings from Bouček 1988 (A) and 

http://www.nhm.ac.uk/research-curation/research/projects/chalcidoids/agaonidae.html (B). 

 

1.4.2 Non-pollinating fig wasps 

 Whilst pollinating wasps are essential for fig reproduction, another group of fig 

wasps also develop in fig ovules, but cheat the mutualism by failing to transfer pollen 

(but see Jousselin et al. 2001b).  The majority of these non-pollinating fig wasps 

(NPFWs) are grouped into five different subfamilies (Epichrysomallinae, Otitesellinae, 

Sycoryctinae, Sycophaginae and Sycoecinae) that are exclusively associated with figs 

(Bouček 1988).  Smaller radiations of other wasps including eurytomids and braconids 

are also associated with fig trees, but not exclusively so (van Achterberg and Weiblen 

2000; Lotfalizadeh et al. 2007).   

During the period from syconium pre-receptivity to post-pollination, different genera of 

externally ovipositing non-pollinating wasps can lay their eggs into fig ovules.  Non-

pollinating wasps are either herbivorous and oviposit into empty ovules inducing galls 

themselves (gall-formers), or they are parasitic on developing wasp larvae and oviposit 

into occupied ovules.  The larvae of these latter wasps kill developing gall-formers 

and/or pollinators by parasitizing them directly (parasitoids), or pilfering their food 

resource (as lethal inquilines). Although the vast majority of NPFWs oviposit from the 

other side of the fig wall, a subset have developed morphology similar to pollinating 

wasps, and enter the ostiole to oviposit (van Noort and Compton 1996).  As many as 30 
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species of NPFWs can be associated with a single fig species (Compton and Hawkins 

1992; Hawkins and Compton 1992; Cook and Rasplus 2003). Although detrimental to 

pollinating fig wasps, recent evidence (Dunn et al. 2008b) suggests that NPFWs can be 

indirect mutualists of the fig trees by limiting pollinator wasp oviposition to a subset of 

ovules (see optimal foraging hypothesis).     

 

1.4.3 The reproductive biology of Ficus  

 Around half of the world’s 735 fig species (Moraceae) (Berg and Corner 2005) 

are monoecious where male and female flowers, wasps, pollen and seeds develop within 

a syconium.  Styles of female flowers all reach the same height into the syconial cavity 

but vary in the lengths of their component parts.  Each flower is composed of a stalk 

(pedicel), an ovary and a style.  Flowers with short styles have long pedicels whilst 

those with long styles have short pedicels (Figure 1.3A).  Wasp offspring developing in 

the ovules of short-styled (‘inner’) flowers do so close to the inner syconial cavity, 

whilst those laid in the ovules of long-styled (‘outer’) flowers develop closer to the 

syconial wall (Figure 1.3A). Explanations for the variation in style and pedicel lengths 

have included optimal packing (Janzen 1979a; Kjellberg et al. 1987; Bronstein 1992; 

but see Ganeshaiah et al. 1995) and the regulation of flower allocation to wasp and seed 

production (the short ovipositor hypothesis, see below).  

The remaining 50% of fig species have a dioecious reproductive system where trees are 

either all male or all female.  Male trees bear male (gall) syconia composed of short-

styled female flowers and male flowers.  Wasps, pollen and, in some cases, a few seeds 

develop.  Female trees produce seed syconia composed solely of long-styled female 

flowers, where each style is longer than the ovipositor of the associated pollinator 

(Figure 1.3 B and C).  Foundresses entering female syconia commit ‘reproductive 

suicide’ (Patel et al. 1995), being unable to oviposit into any flowers.  Consequently, 

whilst wasps and pollen develop in male syconia, only seeds develop on female trees. 

Figure 1.3 Variation in style and pedicel length in (A) monoecious syconia and (B) female 

(seed) and (C) male (gall) dioecious syconia. Adapted from Dunn et al. 2008b.  
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Figure 1.4 Aspects of the fig-wasp mutualism:  (A) brown P. imperialis pollinators trapped in a 

F. rubiginosa ostiole whilst attempting to enter; (B) yellow P. imperialis foundresses inside a B-

stage F. rubiginosa syconium; (C) differences in the style lengths of B-stage F. rubiginosa 

flowers; (D) P. imperialis female trapped whilst trying to re-emerge from a F. rubiginosa 

syconium and (E) section sliced through a F. racemosa syconium clearly showing pedicel length 

variation.  Photographs taken by S. Al-Beidh.  

 
1.4.4 Conflicts of interest in the fig/ fig-wasp mutualism 

Despite being defined by their mutual benefit, reciprocal conflict is a common aspect of 

mutualisms (Trivers 1971; Axelrod and Hamilton 1981; Bull et al. 1991).  In the fig/ 

wasp mutualism, differences in the internal floral structure associated with the fig 

reproductive system create separate conflicts of interest between the fig trees and their 

pollinating wasps. 

 

Monoecious fig species 

In monoecious species, each flower can develop into a wasp or a seed.  Fig trees benefit 

from the production of seeds (for seed dispersal) and wasps (for pollen dispersal); 

however, the long-term reproductive success of the fig tree (and of future generations of 

fig wasps) is of little interest to each individual foundress whose fitness gains lie only in 

flowers that nurture her own offspring.  As pollinating wasps do not receive any 

immediate benefits when their host tree produces seeds, they are selected to only 

produce wasp offspring, and to exploit the greatest number of Ficus ovules to do this.  

Similarly, as more pollinating wasps gain entry into a single syconium, more fig flowers 

receive pollen and the benefits accrued to the fig tree by later entering foundresses 

decrease.  Such late entering foundresses therefore provide little additional pollination 
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function but prevent increasing numbers of flowers from becoming seeds (Bronstein 

2001).  Given that pollinating wasps have life cycles many times shorter than the fig 

trees in which they lay their eggs, the stability of the mutualism is therefore dependent 

on factors that allow fig trees to control wasp oviposition to ensure that some seeds are 

set (Janzen 1979a; Anstett et al. 1997; Herre and West 1997; Anstett 2001).   

In obligate mutualisms, a cheating mutant should gain a fitness advantage by accepting 

the benefits of the interaction but failing to provide any service in return.  For this 

reason, such mutualisms have often been considered evolutionary ‘dead ends’ (Bull and 

Rice 1991).  Consequently, in the absence of any controlling mechanisms, pollinating 

wasps should be under selection to oviposit in all fig ovules.  This would quickly 

destroy the mutualistic interaction.  In reality, however, wasps rarely develop in more 

than 70-80% of ovules and usually much less (roughly 50%: Herre 1989; Cook and 

Power 1996; Nefdt and Compton 1996; Dunn et al. 2008b).  So far, four hypotheses 

have been put forward to explain how monoecious fig trees may limit wasp oviposition: 

 

•••• The short ovipositor hypothesis proposed by Ramirez (1970a) suggests that 

style lengths in monoecious Ficus are either longer or shorter than the average 

ovipositor lengths of the associated pollinating agaonid.  Given that fig wasps lay eggs 

next to the ovary at the base of the style (Jousselin et al. 2001a), an ovipositor must 

travel the full length of a style to successfully deposit an egg.  Consequently, short- 

styled flowers should be accessible to the ovipositors of pollinating fig wasps whilst 

long-styled flowers are not.  The bimodal distribution of style lengths in dioecious fig 

species (Weiblen et al. 2001) provides a clear example of the short ovipositor 

hypothesis in action.  Female ‘seed’ syconia are composed entirely of long-styled 

female flowers with each style being longer than the ovipositor of the associated 

pollinator (Figure 1.3B).  Consequently, no wasps develop in these syconia and all 

ovules, if pollinated, become seeds. The style lengths of monoecious fig species, 

however, show no such bimodal distribution (e.g. Bronstein 1992) (Figure 1.3A), and 

instead vary along a continuum from those furthest from the fig wall with short styles 

and long pedicels, to those closest to the fig wall with long styles and short pedicels.  

Moreover, evidence in some monoecious fig species has identified that the majority of 

styles are within reach of a pollinator’s ovipositor (Bronstein 1988a,1992; Nefdt and 

Compton 1996; Herre 1999), suggesting that the short ovipositor hypothesis cannot be a 

general explanation for stability in monoecious Ficus.   
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•••• The unbeatable seeds hypothesis (West and Herre 1994) supposes that wasp 

eggs are prevented from developing within some ovules by as yet, unknown 

mechanisms.  Despite this, Nefdt and Compton (1996) discovered that, in a number of 

fig species, experimentally increasing foundress numbers in syconia led to increasing 

numbers of emerging wasps until almost all flowers were occupied by wasp larvae.  

This invalidates the unbeatable seeds hypothesis as a stand-alone explanation for 

mutualism stability and to date, there is still little evidence to support its existence.  As 

the mechanisms by which seeds are made ‘unbeatable’ to wasp oviposition are still 

unknown, this hypothesis is also a difficult one to test explicity.    

 

•••• The egg limitation hypothesis (Nefdt and Compton 1996) suggests that too few 

foundresses (carrying too few eggs) gain entry into syconia to oviposit into all available 

flowers.  Although there is evidence to support this hypothesis in four fig species (F. 

burtt-davyi, F. thonningii and F. sur, F. maxima: Nefdt and Compton 1996; Joussselin 

et al. 2004), other species (e.g. F. aurea, F.trigonata) have sufficient egg loads to fill all 

available ovules, disputing this as a general explanation for stability among monoecious 

fig systems (Herre 1989; Anstett et al. 1996a, Bronstein and Hossaert-McKey 1996).   

 

•••• The optimal foraging hypothesis (Yu et al. 2004) has been the most recent 

proposal to explain mutualism stability among monoecious Ficus and represents an 

amalgamation of some of the earlier hypotheses.  Its premise is that ovule profitability 

and handling time are correlated with style length.  Coupled with the fact that 

foundresses often die before laying all of their eggs, it uses the foraging theory proposed 

by MacArthur and Pianka (1966) to consider how each foundress should budget her 

time between searching for available ovules and ovipositing into styles.  The hypothesis 

suggests that foundresses should forage for suitable oviposition sites optimally by 

displaying a preference for short-styled (inner) ovules, over outer flowers closer to the 

fig wall for two reasons: (1) because short-styled flowers are associated with a shorter 

handling time (i.e. they may be easier, and quicker to oviposit into: Nefdt and Compton 

1996; Yu et al. 2003; Shi et al. 2006), and/or  (2) because larvae deposited into inner 

ovules receive some fitness benefit over those laid in outer ovules (e.g. a spatial refuge 

from parasitoids ovipositing externally, Dunn et al. 2008b).  This preference for short-

styled flowers will result in first entering females ovipositing into these ovules first 

whilst later entering foundresses will spend longer searching for preferred ovules as 

more eggs are laid.  Outer ovules closest to the fig wall are more likely to be filled once 

the costs incurred by ovipositing into these ovules outweigh the time spent searching for 
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unoccupied inner ovules.  Pollinated outer ovules that fail to receive an egg therefore 

develop as seeds.  The time spent searching for ovules means that foundresses lay fewer 

eggs overall than if they had not shown a preference for some ovules over others. 

Recent evidence supports this hypothesis with pollinators occupying the innermost 

ovules whilst seeds develop in ovules closest to the fig wall (West and Herre 1994; 

Nefdt and Compton 1996; Jousselin et al. 2001a; Anstett 2001; Zavodna et al. 2005; 

Dunn et al. 2008b). 

 

Dioecious fig species 

The conflict prevalent among monoecious species is resolved in dioecious Ficus where 

figs have ‘won’.  Whilst in monoecious species, wasps and seeds develop in the same 

syconium, in dioecious species they develop separately; wasps and pollen develop in 

male syconia whilst only seeds develop in female syconia.  Despite the resolution of this 

conflict, however, a different one exists among dioecious species.  Female syconia rely 

on the presence of agaonid foundresses to pollinate their flowers, but the style of each 

female flower is too long for foundresses to lay their eggs.  Consequently, despite some 

re-emergence (Moore et al. 2003), many female pollinators commit ‘reproductive 

suicide’ (dying without leaving any offspring) (Patel et al. 1995) by entering female 

syconia.  There should be strong selection on pollinators of dioecious species to be able 

to distinguish between male syconia (in which they can reproduce) and female syconia 

(where they cannot).  There is, however, likely to be an equal but opposite selective 

pressure on fig trees to resemble one another as closely as possible otherwise seed figs 

would not be pollinated (so-called ‘vicarious selection’, Grafen and Godfray 1991).  

With the same token, whilst male and female syconia closely resemble one another 

before pollination (Grison-Pigé et al. 2001), post-pollination, it makes sense that seed 

syconia become attractive to frugivores whilst gall syconia do not. Consequently, after 

pollination, gall and seed syconia differ in size, colour, odour and nutritional content 

(Lambert 1992; Dumont et al. 2004). 

 

1.5 Explanations for stability in other obligate pollination 

mutualisms 

Alongside the fig/ fig–wasp interaction, three other obligate pollinator mutualisms have 

also been studied intensively.  It is important to consider how stability has been 

explained in these systems in order to gain a better understanding of how it may be 

achieved among fig trees and their pollinators. 
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1.5.1 The yucca/ yucca-moth mutualism 

Of the four well-known obligate pollination mutualisms, the interaction between yuccas 

and their pollinating moths most closely resembles that between fig trees and their 

wasps.  Having persisted for over 40 million years (Pellmyr and Leebens-Mack 1999), 

yucca moths (Tegeticula spp., Incurvariidae) are the sole pollen dispersers of the yucca 

plants (Yucca, Agavaceae) whilst the seeds of the yucca serve as food for developing 

moth larvae.  Female moths collect pollen from yucca flowers before seeking out 

flowers for oviposition, often avoiding those that have already been visited (Wilson and 

Addicott 1998; Huth and Pellmyr 1999).  Once a suitable site has been selected, females 

oviposit through the ovary wall to lay their eggs and pollen is then actively placed on 

the stigma.  The process can be repeated multiple times on the same, or closely situated 

flowers.  After each oviposition attempt, females must decide whether or not to pollinate 

the flower; however, depositing too little pollen and/or laying too many eggs increases 

the likelihood that the flowers are aborted, killing the developing larvae (Huth and 

Pellmyr 1999).  Providing that flower abortion does not occur, moth larvae hatch a few 

days after oviposition and each larva feeds on a proportion of the yucca seeds (Pellmyr 

and Huth 1994).  The larvae then exit the flower, burrow into the ground to spin a 

cocoon and pupate for a few weeks before emerging as adults (Bronstein and Ziv 1997).   

As with fig wasps, there is strong selection on female moths to lay more eggs to the 

ultimate ruin of the system.  This conflict of interest and its apparent resolution is no 

better observed than between Yucca filamentosa and its two pollinating moths: 

Tegeticula yuccasella and T. cassandra (Segraves 2003).  Females of T. yuccasella 

oviposit in the more commonly observed ‘deep’ ovipositions, through the ovary wall, 

damaging ovules in the process.  If too many ovules are damaged (i.e. too many eggs 

are laid), Yucca filamentosa selectively abscises the flower precluding larval 

development (Marr and Pellmyr 2003).  Tegeticula cassandra, in contrast, lays its eggs 

in ‘shallow’ ovipositions, at the base of Y. filamentosa styles.  This oviposition strategy 

circumvents ovule damage, effectively bypassing the system in place which limits ovule 

overexploitation.  Despite this, many T. cassandra larvae do not develop fully.  

Although larval predation is no greater when eggs are laid in shallow ovipositions 

(Segraves 2003), by laying their eggs in places that leave the larvae more exposed, 

external abiotic factors (e.g. humidity and temperature) end up prematurely killing the 

moth larvae making this cheating strategy, a costly one. 
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1.5.2 The globeflower/ globeflower-fly mutualism 

Unlike other commonly cited obligate pollination mutualisms where there is a one-to-

one specificity between the plant species and its obligate pollinator, this interaction 

involves a single species of globeflower, Trollius europaeus, and six species of dipteran 

pollinator (Chiastocheta spp.) (Pellmyr 1992).  The flies disperse the globeflower’s 

pollen and their larvae consume some seeds during their development.  One pollinator, 

C. rotundiventris, visits young flowers, provides some pollen during oviposition and 

lays one egg per flower, whilst C. dentifera visits wilting flowers (therefore does not 

pollinate) and lays its entire clutch (15 eggs).  Intermediate oviposition behaviours are 

observed in the remaining four Chiastocheta species (Ferdy et al. 2002).  Female 

Chiastocheta flies lay their eggs on or between the carpels of a flower and the larvae 

consume some seeds as they grow.  When mature, the larvae exit the flower, drop to the 

ground and overwinter in the soil, pupating and emerging in the spring.  Unlike other 

obligate pollination mutualisms, T. europaeus is pollinated by flies of both sexes as they 

feed, mate and sleep within the flowers.  Pollination can therefore occur in the absence 

of oviposition. In fact, males and non-ovipositing females pollinate flowers and impose 

little cost to the plant (other than nectar/ pollen removal) whereas ovipositing females 

reduce seed set in each globeflower.  The costs incurred by ovipositing females are 

therefore higher than in other pollination mutualisms.  As globeflowers generally only 

flower every second year, individual plants never receive pollen from the fly larvae that 

they reared (Jaeger et al. 2000).  Moreover, globeflowers generally only produce one to 

three flowers per plant so flower abortion does not occur (Jaeger et al. 2000).  Coupled 

with low larval mortality, it is hard to believe that this mutualism has not been 

overexploited.  Stability is thought to be maintained through density-dependent 

competition among the fly populations.  When only a few eggs are laid, there is little 

competition among larvae and the fly population size increases.  At high fly densities, 

competition increases and the flowers release part of their seeds before the larvae are 

fully developed, effectively starving them (Jaeger et al. 2001).  There is also evidence to 

suggest that in flowers with high Chiastocheta densities, increased concentrations of a 

C-glycosyl flavone, adonivernith, are produced which has been associated with inhibited 

larval growth in other species (Wiseman et al. 1993; Ibanez et al. 2009).   

 

1.5.3 The senita/ senita-moth mutualism 

Discovered in 1995, the interaction between the senita cactus (Lophocereus schotti) and 

the senita moth (Upiga virescens) represents one of the more recently described obligate 

pollination mutualisms.  Female moths pollinate and oviposit into flowers and their 
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larvae consume the senita seeds.  Each senita fruit contains a single moth larva which 

later pupates in the branches of the cactus (Fleming and Holland 1998). Like the fig/ fig-

wasp and yucca/ yucca moth systems, the senita moth is obligately dependent on the 

senita cactus (Holland and Fleming 1999); however, unlike other pollinator mutualisms, 

the senita moth is not the sole pollinator of the cactus as diurnal halictid bees can also 

perform this role.  Despite this, as the cactus is night flowering, senita moths are the 

more effective pollinator (Fleming and Holland 1998).  Mutualism stability has been 

proposed to occur by excessive flower production and selective fruit abortion to control 

population densities of senita moths (Holland et al. 2004).  

 Explanations for stability in three out of the four well-known obligate pollination 

mutualisms have been described in the literature (Addicott and Bao 1999; Csotonyi and 

Addicott 2001; Jaeger et al. 2001; Shapiro and Addicott 2003; Holland et al. 2004); but, 

despite a wealth of knowledge on how figs and their pollinating wasps interact, we still 

do not completely understand how this system is stabilised.  This thesis investigates 

issues both within and across fig species to elucidate how cooperation in the fig/fig-

wasp mutualism has been maintained for over 60 million years. Does variation in the 

distance to ovaries prevent pollinators and parasites overexploiting seeds and wasps?  

What roles, if any, do other insect fauna associated with fig trees have in stabilising the 

fig-pollinator mutualism?  Does the fig reproductive system affect the selective 

pressures acting on the morphology of their associated wasps?  I address each of these 

questions to elucidate how the interaction between fig trees and their agaonid pollinators 

has persisted for so long.   

 

1.6 Data analysis 

In the following chapters, I have often used generalised linear models (GLMs) to 

analyse the data.  Linear regression methods where the response variables are 

continuous assume constant variance and normal distributed errors. However, in many 

cases these assumptions do not apply to real data.  Instead, the data are often count or 

proportion-based.  With count data, the response variables are integer values, and there 

may be many zeros in the data set.  In these situations, the variance can be expected to 

increase with the mean. With proportion data, the response variable is bounded between 

0 and 1 and the relationship between the variance and the mean can be ∩-shaped.   

As an example, suppose you were looking at the number of foundresses gaining entry 

into F.rubiginosa syconia.  The dependent variable (number of foundresses) is discrete 

because a syconium may allow 1 or 2 foundresses to gain entry but intermediate 
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numbers (e.g. 2.5) are not possible.  The distribution is also likely to be skewed (i.e. 

most syconia have 2 or 3 foundresses, fewer have 4 or 5, and very few have 6 or 7). In 

this case, it would be reasonable to assume that the dependent variable follows a 

Poisson distribution.  

A second reason why the linear regression might be inadequate to describe a 

particular relationship is that the effect of the predictors on the dependent variable may 

not be linear in nature.  For example, during the C developmental stage, the size of a 

syconium changes little from day to day.  Its size, however, is likely to change markedly 

over this same time scale (24hrs) just before fig receptivity and just before wasp 

emergence. The relationship (or the link) between syconium size and day of 

development is therefore likely to be non-linear.  

In its simplest form, a generalised linear model (GLM) is a linear model that 

specifies the (linear) relationship between a dependent (response) variable y, and a set of 

predictor (explanatory) variables, z1 , z2 etc., which can be continuous (leading to a 

regression type analysis) or categorical (leading to an ANOVA like analysis) (Crawley 

2005).  For example, for count data, the model might be: 

 

model<- glm(y~z1+z2, family= poisson) 

 

Each model is composed of three key parts:  

(1) An error structure: Poisson errors for count data, binomial errors for proportion data. 

(2) A linear predictor: the linear combination of all the explanatory variables.  

(3) A link function which relates to the linear predictor (e.g. a log-link is generally used 

for count data, whilst a logit link is used for proportion data, Crawley 2005).   

 

As the output of a generalised linear model does not produce an R
2
 value, I use an 

equivalent measure which I call the proportion deviance squared (P.D.E), where:  

 

P.D.E =
deviancenull

devianceresidualdeviancenull −  

 

 Throughout this thesis you may notice that I sometimes state that my data were 

‘overdispersed’.  Overdispersion is a phenomenon that occurs occasionally with 

binomial and Poisson data when the actual variance of the response exceeds the GLM 

Poisson or binomial variance - in other words, where the actual data varies more than 

you would expect if the response distribution really was Poisson or binomial.  
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Overdispersion is apparent if, after completing a GLM, the residual deviance is larger 

than the residual degrees of freedom.  Specifying quasi-binomial or quasi-poisson in the 

error structure and using F tests instead of χ
2
 tests means that a more appropriate 

variance function is specified (Crawley 2005). 

 

1.7 Thesis layout 

 The structure of this thesis does not follow the chronological order in which the 

research was undertaken, but rather is presented in its most logical format.  In chapter 2, 

I consider the short ovipositor hypothesis (one of four hypotheses proposed to explain 

why pollinating wasps do not develop in all Ficus ovules), and its applicability to the 

three cryptic pollinator species of Ficus rubiginosa syconia, and to its non-pollinating 

wasp fauna.  Chapters 3, 4 and 5 investigate in more detail organisms other than fig 

trees and their pollinators that may also impact upon the mutualism.  Specifically, 

chapters 3 and 4 consider externally and internally ovipositing non-pollinating fig wasps 

respectively, whilst chapter 5 looks at how green tree ants may influence the system.  In 

chapter 6, I consider how the fig trees themselves may help stabilise the mutualism by 

studying the morphology of their syconia and that of their associated wasps.  In 

particular, I elucidate whether the fig reproductive system (monoecious or dioecious) 

has affected the observed morphology of the mutualistic partners, and whether this, in 

turn, has influenced the conflict over seed production that differs in the two fig 

reproductive systems.  Finally, the findings of the thesis are summarised in chapter 7 

where conclusions are drawn and guidelines for future work suggested.  

The thesis has been laid out as a series of short paper-style chapters which are 

meant to exist as self-contained units.  The intention is for any one chapter to be able to 

be read without reference to any other.  Consequently, there is some (inevitable) overlap 

in descriptions across chapters such as the fig/ pollinator lifecycle and the conflict in the 

mutualism - aspects that are crucial to the explanation of the system and to the central 

question of mutualism stability.   
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                                                                                 Chapter 2 

Plant versus pollinator versus parasite: the return of the 

short ovipositor hypothesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ovipositing agaonid female (Hanson and Ramirez 1995)
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2.1 Abstract 

Fig trees and their pollinators are involved in a tightly integrated mutualism 

where the reproduction of both is prevented in the absence of one or other partner.  As, 

however, only either a wasp or a seed can develop in any one flower, the production of 

seeds comes at a cost to wasp development and vice versa.  Whilst seed and wasp 

production (seed and pollen dispersal) benefit fig trees, pollinating wasps are only 

interested in flowers that nurture their own offspring.   

 Across monoecious fig species, wasps and seeds develop together within fig fruit 

(syconia).  Wasps emerge from roughly 50% of ovules with the remaining ovules 

developing into seeds; however, it remains uncertain how monoecious Ficus prevent 

wasps exploiting too many flowers.  The short ovipositor hypothesis (SOH) is one 

suggestion, proposing that pollinating wasps fail to develop in all ovules because some 

flowers have styles longer than the wasps’ ovipositors.  Evidence for the SOH is varied, 

being partial in some fig species but absent in others.  I test for its evidence in Ficus 

rubiginosa and three of its cryptic, sympatric pollinator species (species 2, 3 and 4 of 

the Pleistodontes imperialis complex).  First, I consider the morphology of each 

pollinator species.  Although species 2 wasps have significantly longer ovipositors than 

those from species 3, all three species could access more than 99% of F. rubiginosa 

ovules, suggesting that the SOH is not applicable in this system.  Moreover, this implies 

that ovipositor length and differential flower use do not provide an explanation for how 

multiple species co-exist within syconia. 

 Second, as a new twist on the SOH, I investigate its application to the externally 

ovipositing non-pollinating fig wasps (NPFWs) associated with F. rubiginosa.  In 

general, fewer ovules were accessible to these NPFWs than to pollinators.  Sycoscapter 

and Philotrypesis parasitoids were capable of accessing 66.8% and 91.9% of ovules, 

whilst Eukobelea and Pseudidarnes gall-formers could access 96.3% and 100%.  These 

results suggest that innermost ovules may provide pollinator larvae with enemy-free 

space from parasitoid attack and support previous evidence for spatial segregation of 

pollinator and parasitoid larvae.  Although the SOH in its original form is not applicable 

here, a parasitoid-centred SOH may contribute more to our understanding of mutualism 

stability by encouraging ovipositing pollinators to prefer inner ovules and avoid outer 

ones more accessible to parasitoids ovipositing from the other side of the fig wall. 
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2.2 Introduction 

 Given that mutualistic interactions involve individuals of different species often 

from highly divergent taxa, it is perhaps unsurprising that, despite providing each other 

with a service, partners also conflict in what is in their own best interests (e.g. Herre 

1989; Herre and West 1997; Cook and Rasplus 2003).  This conflict is no more apparent 

than between fig trees and their pollinating wasps that, despite relying completely on 

one another to reproduce (individual syconia provide the only egg laying sites for the 

wasps, and the wasps are the trees’ only pollen vectors), differ considerably in their 

reproductive interests (Anstett et al. 1997; Cook and Rasplus 2003).  

 Female pollinating wasps enter fig fruit (syconia) during a short period of fig 

receptivity.  Those that successfully gain entry (foundresses) lay their eggs and pollinate 

many of the tiny flowers that line the interior of the syconium, dying shortly afterwards 

(Galil and Eisikowitch 1969). Externally ovipositing non-pollinating fig wasps (NPFWs) 

are also associated with fig species and are highly host-specific, but effectively cheat the 

mutualism by laying their eggs into ovules whilst failing to disperse pollen.  Some 

NPFWs (parasitoids and inquilines) parasitize developing wasp larvae whilst others 

(gall-formers) are herbivorous and oviposit into empty ovules (Compton and van Noort 

1992; West and Herre 1994; Weiblen 2002).  Despite variation in the timing of 

oviposition, the vast majority of wasp offspring emerge from their galls and disperse at 

the same time.  After mating, female pollinators collect pollen from ripened male 

flowers whilst male pollinators chew holes in the wall of syconia, allowing wasps to 

disperse.   

 Monoecious species constitute roughly half of the 735 described fig species 

(Berg and Corner 2005), and male and female flowers develop together within syconia.  

Male flowers produce pollen whilst female flowers encourage the development of 

pollinating wasps and seeds.  Crucially, pollinating wasp larvae eat the seed tissue and 

prevent it developing.  If foundresses entering syconia were to lay an egg into every 

female flower, no seeds would develop and the mutualism would be unstable.  Wasps, 

however, generally develop in only 50% of ovules (Janzen 1979b; Herre 1989; Nefdt 

and Compton 1996; Bronstein and Hossaert-McKey 1996; Yu et al. 2004) suggesting 

that mechanisms must be in place that limit wasp oviposition.   

 The short ovipositor hypothesis (SOH) was proposed to explain why pollinating 

wasps do not develop in all monoecious fig ovules (Ramirez 1970a).  Style lengths in 

monoecious syconia vary along a continuum from short-styled flowers with long stems 

(pedicels) that develop close to the inner cavity (inner flowers), to long-styled flowers 
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with short pedicels that develop close to the fig wall (outer flowers) (Figure 1.3A).  

Given that eggs are only successfully deposited if a pollinator’s ovipositor can travel the 

full length of the style (Ramirez 1969; Janzen 1979a; Otero and Ackerman 2002; but see 

Zhang et al. 2009), the SOH suggests that a subset of flowers have style lengths longer 

than the ovipositors of pollinating wasps and are therefore protected from wasp 

exploitation.  Nefdt and Compton (1996) studied 10 monoecious African fig species and 

concluded that in eight species, between 1 and 30% of flowers had styles that were 

inaccessible to pollinating wasps, whilst 40-45% of styles were out of reach to 

pollinators in the two remaining species.  In two Neotropical species, F. pertusa and F. 

maxima, 18% and 17% of styles (respectively) were inaccessible (Bronstein 1988a; 

Jousselin et al. 2004).  This means that observed proportions of flowers developing as 

seeds are often much higher than the proportion of inaccessible ovules.  It also suggests 

that the SOH cannot be a stand-alone theory to explain how wasp oviposition is limited 

among Ficus, but it may help explain how reproduction is restricted in some fig species.   

 I investigate the SOH in Ficus rubiginosa, an Australasian fig species (section 

Malvanthera) that is distantly related to other lineages (e.g. Pharmocosycea, Americana, 

Galoglychia, Sycomorus) where the SOH has been tested (Rønsted et al. 2005, 2008).  

Originally, Ficus rubiginosa was thought to support a single agaonid pollinator, 

Pleistodontes imperialis.  Genetic data (Haine et al. 2006), however, revealed that what 

was originally considered to be a single species is in fact four cryptic pollinator species- 

now termed, the ‘P. imperialis complex’.  Despite the exact distribution of each species 

being unknown, multiple species can be found on the same tree, and sometimes within 

the same syconium (Haine et al. 2006).  This supports other studies (e.g. Michaloud et 

al. 1985 (F. ottoniifolia); Galil and Eisikowitch 1968b, 1969 (F. sycomorus); Ramirez 

1970b (F. tuerckheimii); Compton 1990; Ware and Compton 1992 (F. lutea)) that 

dispute the existence of a universal one fig: one pollinator rule (Wiebes 1963).  How 

such coexistence among co-pollinators is achieved is a topic of considerable debate 

(Chesson 1991; Taper 1993; Chesson and Huntly 1997; Grover 1997).    

 Gause’s law of competitive exclusion (Gause 1934; Hardin 1960) suggests that 

multiple species that compete for a limited resource cannot coexist if other ecological 

factors are constant.  The Lotka-Volterra equation, however, states that coexistence can 

be maintained if intra-specific competition exceeds inter-specific competition 

(Armstrong and McGehee 1980).  Resource partitioning (Pyke 1982) and the 

aggregation model (Atkinson and Shorrocks 1981) are two theories that explain how 

this may occur.  Resource partitioning suggests that competing species may be driven by 

natural selection to use slightly different types of resources to facilitate coexistence 
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(Pyke 1982).  Such resources can be temporal, spatial or morphological in nature.  The 

aggregation model suggests that if one competitor is clustered (‘aggregated’) in one 

fraction of an available habitat or resource, the remaining empty patches can be 

occupied by a competing individual (Atkinson and Shorrocks 1981; Ives and May 1985; 

Ives 1991).  The resultant clumping of closely related individuals will mean that intra-

specific competition is higher than interspecific competition, thereby enabling 

coexistence.  Both resource partitioning (Hutchinson 1959; MacArthur and Levins 1967; 

Levins 1968; MacArthur 1972; Pyke 1982; Kronfeld-Schor and Dayan 1999; Zhai et al. 

2008) and the aggregation model (Shorrocks and Rosewell 1986, 1987; Hanski 1981; 

Comins and Hassell 1981; Atkinson 1985) have been supported in the literature with 

suggestions that the aggregation model may better explain coexistence among closely 

related competitors whilst resource partitioning is more applicable to coexistence among 

less closely related species (Takahaski et al. 2005). 

 In F. rubiginosa, as foundresses of more than one species compete for the same 

oviposition sites, resource partitioning or aggregation of conspecifics may facilitate 

coexistence.  Within Ficus rubiginosa syconia, roughly 40% of ovules nurture pollinator 

larvae whilst 50% become seeds (Cook and Power 1996; Dunn et al. 2008b).  I 

investigate whether the SOH can explain these observed levels of seed predation and 

whether variation in ovipositor length across pollinator species can contribute to 

morphological niche segregation (oviposition into different length styles) among 

sympatric P. imperialis species to allow coexistence. 

 The SOH has traditionally been considered with reference to pollinating wasps; 

however, not only may long-styled ovules be out of reach to pollinators ovipositing 

within the fig cavity, but long pedicel flowers that develop furthest from the syconium 

wall may, by a similar reasoning, be out of reach to non-pollinating fig wasps (NPFWs) 

ovipositing through the fig wall.  I studied four NPFWs commonly found in F. 

rubiginosa syconia: the parasitoids of P. imperialis, Philotrypesis and Sycoscapter spp. 

(Cook and Power 1996; Dunn et al. 2008b), and two gall-forming genera, Eukobelea 

and Pseudidarnes spp. (Cook and Power 1996; Haine and Cook 2005). As there is little 

knowledge of how NPFWs oviposit into ovules (but see Compton and Robertson 1988; 

Peng et al. 2005), I also recorded the oviposition paths of NPFWs killed during 

oviposition and the relative proportion of ovules accessible to wasps of each genus.   
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2.3 Materials and methods 

2.3.1 Study species 

Ficus rubiginosa has a native range that extends along most of the eastern 

coastline of Australia (Dixon et al. 2001).  It grows in both rainforests and on granite 

outcrops (Fairley and Moore 2000), and is host to four cryptic pollinator species that 

exhibit significant mitochondrial DNA divergence (9-17%, Haine et al. 2006).  Three of 

the four species (species 1, 3 and 4) are brown/ black whilst the other is yellow (species 

2).  At present, we can only reliably identify the yellow species without genetic data.   

 

2.3.2 Ovules accessible to pollinating wasps 

 I collected 98 receptive syconia containing at least one live ovipositing 

foundress from seven trees in Townsville, Australia (19° 15' 0 S, 146° 48' 0 E).  

Receptive syconia containing foundresses were often distinguished by the presence of 

wings protruding from the ostiole (Khadari et al. 1995; Anstett et al. 1996b).  Collected 

syconia were halved with a blade to confirm that foundresses inside were alive and at 

least one was actively ovipositing. Any empty syconia or any containing only dead 

foundresses were discarded to ensure that style lengths represented the actual distances 

encountered by ovipositing females.    

 I measured the maximum length and width of each collected syconium and then 

stored them individually in 40% ethanol to preserve the ovules and prevent the styles 

from drying out.  To achieve a large and representative sample of the variation in ovule 

and style lengths across receptive F. rubiginosa syconia, I measured a random sample of 

25% of style lengths from each syconium.  To do this, syconia were sliced into eighths 

using a razor blade and, working from left to right for each segment, every fourth ovule 

was removed using forceps and placed in a watch glass of water to prevent desiccation.  

This was repeated for each eighth.  Style lengths were measured from where they joined 

the ovary to the top of the stigma (Figure 2.1A (a)) and were recorded to the nearest 

0.03mm using a dissecting microscope at 40x magnification.  

 I recorded the head length and width, and hind femur and tibia lengths for each 

of 145 foundresses from collected syconia. The ovipositor was dissected from the body 

of each wasp so that its total length (first and second valvulae) could be measured.  I 

also calculated a relative measure of ovipositor length (ovipositor length/ femur length) 

to account for variation in individual body size.  Field observations of pollinating fig 

wasps have confirmed that during oviposition, the entire length of the first and second 

valvulae are inserted into the style (Nefdt and Compton 1996).  Consequently, total 
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ovipositor length is the most accurate measure of the oviposition distance accessible to 

each foundress.  I carried out wasp dissections at 40x magnification under a dissecting 

microscope using fine forceps and stored each wasp individually in 100% ethanol to 

prevent DNA degradation. 

  

2.3.3 Identification of Pleistodontes imperialis species 

To determine whether ovipositor lengths of P. imperialis species varied 

significantly, I first identified foundresses to species by DNA barcoding.  I kept wasp 

heads for reference and carried out DNA extractions on the remaining bodies using a 

Chelex extraction as detailed in West et al. (1998).  I amplified 444bp fragments of 

mitochondrial cytocrome b using primers CB1 (5’-TAT GTA CTA CCA TGA GGA 

CAA ATA TC-3’) and CB2 (5’-ATT ACA CCT CCT AAT TTA TTA GGA AT-3’).  

Polymerase Chain Reactions (PCR) were performed on a Techne Touchgene Gradient 

machine with three minutes at 94°C, followed by 30 cycles of 15 seconds at 95°C, 15 

seconds at 45°C and 30 seconds at 72°C, and a final elongation step of 10 minutes at 

72°C.  For each PCR product, 2µl was electrophoresed through a 1% agarose gel to 

determine amplification size, and 18µl of PCR product was then sent to Macrogen for 

purification and sequencing using the same CB1primer as in the original PCR.  A total 

of 110 successful sequences, along with 33 P. imperialis cytochrome b sequences 

collected from a BLAST search were edited with FinchTV (version 1.4.0, 

http://www.geospiza.com/finchtv) and aligned in Bioedit (version 7.0.0, Hall 1999).  

Final classification of individuals to species was made using a distance matrix of 

aligned sequences and plotting all sequences on a DNAdistance neighbour phylogenetic 

tree in Treeview 1.6.6 (Page 1996).  Members identified to the same species exhibited 

0-7% divergence whilst those from other species showed 10-15% divergence (Haine et 

al. 2006).  

 

2.3.4 Ovules accessible to non-pollinating fig wasps 

2.3.4.1 Investigating the oviposition paths of NPFWs 

Seven non-pollinating fig wasps (NPFWs) from three genera (Philotrypesis, 

Eukobelea and Pseudidarnes) were collected whilst ovipositing by crushing them with a 

finger onto the syconium.  To observe the path of the ovipositor, successive wafer-thin 

slices were cut longitudinally through the syconium using a razor blade until the 

ovipositor was revealed.  The wasp and its syconium were then stored in diluted ethanol 

(40%) and used to assess ovule accessibility (see below).   
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2.3.4.2 Measuring oviposition distances encountered by NPFWs  

A total of 125 non-pollinating fig wasps were sampled during oviposition on F. 

rubiginosa syconia.  Each wasp and its syconium were stored in 40% ethanol.  To assess 

the proportion of ovules accessible to each NPFW, individual syconia were halved using 

a razor blade and where entire ovules (from the pedicel to the top of the ovary) were 

visible, minimum (fig wall to where ovary joins the pedicle, Figure 2.1B (b)), and 

maximum (fig wall to the top of the ovary, Figure 2.1B(c)) oviposition distances for one 

half of each syconium were recorded.  Roughly 15 ovules per syconium were suitable 

for measurement using this method.  Minimum and maximum oviposition distances 

were recorded as, to my knowledge, it is not known where within an ovule (i.e. top or 

bottom) these NPFWs oviposit in order to successfully deposit an egg.  I measured the 

head length and width, hind femur and tibia lengths and total ovipositor length of each 

ovipositing NPFW under a dissecting microscope at 40x magnification.  

 

                               

Figure 2.1 Measurements of a) style length and, b) minimum (fig wall+pedicel), and c) 

maximum (fig wall+pedicel+ovary) oviposition distances with respect to pollinators (A), and 

externally ovipositing NPFWs (B). 

 

2.3.5 Data analysis 

For each wasp, I considered the proportion of ovaries ‘accessible’ to be those 

with oviposition distances shorter than, or equal to, the total length of the ovipositor.  I 

performed ANCOVA models on each of ovipositor length, head length, hind tibia length 

and relative ovipositor length (ovipositor/ femur length) (response variables) among P. 

imperialis species (categorical explanatory variable), including fig volume and site as a 

covariate and random effect respectively, to observe whether P. imperialis species were 

morphologically different.  I also used an ANOVA to investigate whether the proportion 

of accessible ovules varied significantly between pollinator species, using individual 

syconia as a random effect in the analysis.  All models were simplified by backward 

elimination of terms, using a χ
2
 test to check the validity of these removals (Crawley 

2005).  
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2.4 Results 

2.4.1 Ovules accessible to pollinating wasps 

I successfully identified foundresses from 71/98 syconia to one of three P. 

imperialis species: species 2 (n=44), 3 (n=59) and 4 (n=7).  Most syconia (80.3%) were 

occupied by a single foundress, 12.7% by two foundresses and 7% by more than two 

(see Table 2.1).  Ninety percent of syconia contained a single species of P. imperialis 

with the remaining 10% containing two species.  It is worth noting that these foundress 

numbers are likely to be slight underestimates as some syconia left on the tree would 

inevitably receive more foundresses (Khadari et al. 1995).  Moreover, whilst <10% of 

figs had two species of P. imperialis, this is largely due to the fact that 80% of syconia 

contained a single wasp.  In figs with two or more wasps, 50% (7/14 syconia) had two 

species of pollinators.   

 

Table 2.1 Relative numbers (percentage) of syconia containing 1, 2 or more than 2 foundresses, 

and the associated number of P. imperialis species. 

                                  Number of species 

Number of foundresses  1 2             3 

  1 57 (80.28) NA           NA 
  2 4 (5.63)     5 (7.04)           NA 

>2 3 (4.23)      2 (2.872) 0 (0.00) 

 

 Species 2 (yellow) individuals had significantly longer heads, tibias and 

ovipositors than species 3 foundresses (ovipositor length: P=0.05, Adjusted R
2
=0.05, F5, 

97=2.11; head length: P<0.001, Adjusted R
2
=0.11, F2, 106=7.85; tibia length: P <0.01, 

Adjusted R
2
=0.05, F2, 98=3.54).  Despite this, relative ovipositor length (P=0.30, 

Adjusted R
2
=4.87E-03, F2, 103=1.20), and ovule accessibility (P=0.63, F2, 291=0.46, 

Adjusted R
2
= -0.0037) were not significantly different across species, with all three 

species capable of accessing a minimum of 99.4% of F. rubiginosa ovules (Figure 2.2).   
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Figure 2.2 Style length distribution (grey) for F. rubiginosa ovules from 98 syconia, and 

ovipositor (white) distributions for (A) species 2, (B) species 3 and (C) species 4 P. imperialis 

foundresses.   

 

2.4.2 Ovules accessible to non-pollinating fig wasps. 

2.4.2.1 Investigating the paths non-pollinating wasp ovipositors take during oviposition. 

For seven NPFWs (Philotrypesis (n=3), Pseudidarnes (n=2), Eukobelea (n=2)) 

crushed during oviposition, the path of the ovipositor represented the shortest route from 

the fig wall to the focal ovule (Figure 2.3).  Unfortunately, the ovipositors of 

Sycoscapter wasps collected during oviposition did not remain within syconia and the 

paths of their ovipositors could not be traced.  
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Figure 2.3 Oviposition pathways for (A) Pseudidarnes, (B) Philotrypesis, and (C) Eukobelea 

NPFWs. Arrows indicate the start (red) and end (black) points of each ovipositor. Photographs 

taken by S. Al-Beidh.  

 

2.4.2.2 Measurement of oviposition distances encountered by NPFWs  

Philotrypesis and Sycoscapter NPFWs (parasitoids of P. imperialis) attack 

syconia relatively late in their development when pollinator eggs have already been laid 

(Table 2.2).  In contrast, wasps from the two gall-making genera attack earlier; 

Eukobelea attacking syconia 0.90cm in diameter whilst Pseudidarnes minerva attack 

earlier still (Table 2.2).  As both genera are gall-formers, they often attack syconia even 

before they have been pollinated.  On average, Sycoscapter wasps could access 66.8% 

of ovules whilst Philotrypesis, with longer ovipositors, could reach 91.9% of ovules.  

Eukobelea wasps were capable of accessing 96.3% of ovules whilst Pseudidarnes wasps 

had ovipositors that could reach all ovules (Figure 2.4). 

 
Table 2.2 Numbers (N) and average ovipositor lengths of NPFWs collected during oviposition 

from different figs, trees and study sites and the average size of the F. rubiginosa syconia they 

attack. 

Wasp N 
Ovipositor length 

(S.E.) (mm)  
Fig diameter 
(S.E.)(mm) 

Trophic 
status Site Tree Figs 

Pseudidarnes 6 3.00 (0.13) 6.21 (0.32)   Gall-former 1 2 5 

Eukobelea 5 3.57 (0.12) 9.02 (0.31) Gall-former  1 1 5 

Sycoscapter 42 3.32 (0.10) 12.11 (0.25)  Parasitoid 3 6 40 

Philotrypesis 72 4.40 (0.08) 12.55 (0.17)  Parasitoid 4 6 68 
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Figure 2.4 Minimum (light grey) and maximum (dark grey) oviposition distances to F. 

rubiginosa ovules for (A) Sycoscapter, (B) Philotrypesis, (C) Eukobelea and (D) Pseudidarnes 

ovipositors (white).  

 

2.5 Discussion 

Mutualism dynamics with coexisting pollinator species 

 Three P. imperialis species (species 2, 3 and 4) were identified among the wasps 

sampled from F. rubiginosa syconia and all three species could access over 99% of 

ovules.  Moreover, although the criteria for syconium collection (only those containing 

live foundresses) may have underestimated the total numbers of foundresses entering 
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syconia, 90% contained only a single pollinator species.  Of the remaining 10% that 

contained different species, in the majority of cases (85.7%) at least one of these 

foundresses was a yellow (species 2) pollinator.  This high incidence of syconia where 

dark (species 3 and 4) and light (species 2) coloured P. imperialis coexist may prove 

significant because although these results show no evidence for niche separation on the 

basis of morphology, temporal niche separation is, as yet, an unstudied possibility.  

Evidence from Ficus sycomorus, which has both dark and pale pollinator species, 

suggests that Ceratosolen arabicus, the yellow pollinator, has enlarged eyes and is 

nocturnal, whilst C. galili is black and flies during the day (Galil and Eisikowitch 1974; 

Compton et al. 1991; Warren et al. 2010).  That yellow pollinators are night-dispersing 

and brown pollinators, day-dispersing, has also been described in other fig species 

(Harrison 2003).  Further work should test for such differences in the dispersal patterns 

of the Pleistodontes imperialis species.   

 

The NPFW short ovipositor hypothesis 

Dunn and others (2008b) proposed that parasitoid ovipositor length may play a 

role in the stability of the fig/ fig-wasp mutualism.  The authors suggested that inner 

flowers may provide an area of enemy-free space for pollinator wasp larvae if these 

flowers were out of reach to parasitoid wasps ovipositing externally.  Data from F. 

rubiginosa identified that the risk of parasitism by Sycoscapter or Philotrypesis wasps 

ranged from 0% in the innermost flowers to 80% closer to the fig wall; however, neither 

parasitoid ovipositor length nor ovule accessibility at the time of oviposition was 

measured.  Moreover, the placement of wasp eggs has been investigated for very few fig 

wasp species (Cook and Rasplus 2003).   

I successfully traced the ovipositors of seven individuals from three NPFW 

genera.  In each case, the ovipositor was traced directly into an ovule below its entrance 

point, suggesting that on at least some occasions, NPFWs oviposit via the shortest 

possible route.  This is a crucial point as it validates the measurement of ovule 

accessibility among NPFWs assuming oviposition via a direct route.  I also assumed that 

NPFWs insert the full length of their ovipositors into the syconium wall to successfully 

deposit an egg.  Although this is essentially true for externally ovipositing wasps with 

short ovipositors (personal observation), for wasps possessing very long ovipositors 

(such as Sycoscapter and Philotrypesis) oviposition assumes a ‘tip-toe’ posture, with the 

ovipositor positioned between the forelegs (Gardiner 1966; Ramirez 1986), and with 

part of it often remaining above the fig wall.  The results for the parasitoid species in 
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particular are therefore likely to over-estimate ovule accessibility, which is probably 

more restricted.    

 The proportions of ovules available to NPFW varied between gall-formers and 

parasitoids.  The two gall-forming genera, Eukobelea and Pseudidarnes, do not rely on 

already occupied ovules in which to oviposit and therefore attack syconia earlier in their 

development, often even before pollinator entry (personal observation).  These wasps 

were capable of accessing over 94% of ovules.  In comparison, two parasitoid NPFW 

genera (Sycoscapter and Philotrypesis), despite often having longer ovipositors, were 

able to access fewer ovules (on average 66.8 and 91.9% respectively) because they rely 

on developing host larvae and therefore must oviposit into syconia at a later stage of 

development where distances from the fig wall to focal ovules have increased (Compton 

and Nefdt 1990).  This suggests that parasitoid NPFWs are unable to access the 

innermost ovules and supports evidence from Dunn et al. (2008b) that considers the 

spatial stratification of gall occupants.   

 In conclusion, the short ovipositor hypothesis was originally proposed as an 

explanation for mutualism stability by considering whether some flowers were 

inaccessible to ovipositing foundresses.  As over 99% of styles were accessible to 

foundresses in F. rubiginosa, the pollinator SOH cannot explain seed predation levels 

(roughly 50% of flowers, Cook and Power 1996; Dunn et al. 2008b) in this fig species.  

Given that all three P. imperialis species could access the vast majority of fig flowers, 

morphological niche segregation via oviposition length also seems unlikely.  

Nevertheless, by applying the SOH to parasitic NPFWs, I show that parasitoid wasps 

ovipositing externally are unable to reach all ovules.  This may, in turn, encourage 

pollinators to prefer short-styled flowers where larvae are at less risk from parasitism.  

This foundress ‘oviposition profile’ (Yu et al. 2004) indirectly impacts on seed set as 

ovules least preferred by foundresses, if pollinated, become seeds.  Similar work in 

other fig/ wasp partnerships from different lineages that considers the applicability of 

the short ovipositor hypothesis with respect to NPFWs should be carried out to 

determine whether this may contribute more generally to stability within the fig/ fig-

wasp mutualism. 
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                                                                                 Chapter 3 

Do the fig wasp parasitoids of Ficus racemosa condemn 

themselves to life imprisonment? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sycoscapter sp. female (Hymenoptera: Sycoryctinae) (Boucek 1988)
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3.1 Abstract 

Fig trees and their pollinating wasps constitute a well-known obligate mutualism, 

where each partner relies on the other for reproduction.  This mutualism is exploited by 

other wasps that also reproduce within fig fruit (syconia).  Many of these wasps are 

parasitoids of developing wasp larvae, whilst others are herbivorous, galling fig ovules 

themselves.  Male pollinating wasps have three crucial functions: (1) to mate with 

female pollinators, (2) to release them from their galls and (3) to chew exit tunnels in 

the wall of the syconium to enable them to escape.  If they fail in the second task, 

individual females can remain trapped within their galls, even if mated.  Failure in the 

third task often results in female pollinators being unable to exit their natal syconium.  

Parasitic fig wasps often have jaws unsuitable for biting through the syconium wall and 

therefore also rely on the holes chewed by male pollinating wasps in order to disperse.   

 I investigated the natural proportion of syconia that fail to exit (‘unexited’ 

syconia) in Ficus racemosa, and whether failure to emerge is a result of too few 

pollinator males.  I also discuss whether low pollinator male number is caused by low 

foundress number and/or high rates of parasitism.  Results indicate that 4% of F. 

racemosa syconia contain wasps that fail to disperse.  The probability of an exit hole 

being made increases with the number of pollinator males, and with fewer than ten 

males in a syconium, it is unlikely that any wasps will emerge.  Significantly higher 

proportions of non-pollinating fig wasps and lower proportions of male and female 

pollinating wasps were found in unexited syconia compared to syconia where wasps 

exited normally.  Unexited syconia, however, did not have significantly higher numbers 

of Platyneura agraensis - the parasitoid of pollinators, suggesting that low foundress 

number is likely to be the primary reason for wasps failing to exit.  Without an 

alternative release mechanism, wasps in these syconia will die.  I discuss the possibility 

that dispersal through holes produced by other insect fauna may sometimes provide an 

alternative means of escape for these trapped wasps.  
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3.2 Introduction 

Pollinating fig wasps (Chalcidoidea, Agaonidae) and their fig trees (Ficus, 

Moraceae) are a classic example of an obligate mutualism.  The fig trees provide the 

pollinating wasps with oviposition sites in which to lay their eggs whilst the wasps are 

the sole dispersers of a fig tree’s pollen.  Egg laden foundresses gain entry into receptive 

(B- stage, Galil and Eisikowitch 1968a) fruit (syconia) through a pore called the ostiole.  

Once inside, females lay their eggs into flowers and transfer pollen carried from their 

natal syconium onto receptive stigmas.  They die within the syconial cavity and their 

offspring develop during the coming weeks (C-stage).  Male pollinating wasps are the 

first to emerge from their galls.  They are wingless and practically blind and their entire 

lives are spent within their natal fig.  Despite this, they have three roles that are crucial 

to the fig/ wasp life cycle.  Once they have emerged from their own galls (D-stage), 

male pollinators bite holes in the galls containing female pollinators and mate with them 

through these openings.  The holes are later enlarged so that females can emerge from 

their galls (Zammit and Schwarz 2000).  Finally, the males chew exit tunnels through 

the syconium wall to facilitate wasp dispersal.  Female pollinators collect pollen 

(actively or passively) that has ripened in male flowers and disperse through these 

tunnels in search of new receptive syconia.  After wasp dispersal (E-stage), the fig 

ripens fully, attracting birds, bats and monkeys which disperse its seeds (Janzen 1979a).   

 As is the case in most mutualisms, the fig-pollinator system is subject to attack 

by parasites (Bronstein 1991; Yu 2001): a suite of non-pollinating fig wasps (NPFWs) 

that have generally been regarded as costly to both mutualists and exploit the system 

(Kerdelhué and Rasplus 1996; West et al. 1996; but see Dunn et al. 2008b).  Like the 

pollinators, NPFWs use the flowers within syconia to reproduce.  Some NPFWs have 

herbivorous larvae that directly consume the tissue of the syconium, whereas others 

reduce the number of emerging wasps by parasitizing developing larvae (Kerdelhué and 

Rasplus, 1996; West et al. 1996; Weiblen, 2002; Cook and Rasplus 2003; Dunn et al. 

2008b).  Parasites of pollinators destroy a single pollinator larva in order to successfully 

mature, whether they are inquilines usurping the developing pollinator from its gall, or 

parasitoids that kill the pollinators directly (Tzeng et al. 2008).  Like female pollinators, 

the jaws of many NPFWs are unsuited to chew through the fig wall (Cook et al. 1997; 

Bean and Cook 2001, but see Compton et al. 1994), and the holes produced by male 

pollinators are often necessary to enable them to disperse.  Consequently, pollinator 

females and many NPFWs rely on pollinator males to achieve reproductive success.  

 When mating takes place between the offspring of one, or a few mothers, and 
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where daughters disperse but sons do not, a female-biased sex ratio is favoured 

(Hamilton 1967).  Pollinating fig wasps provide a good example of sex ratio theory and 

lay strongly female-biased sex ratios (Hardy 1994).  In single foundress syconia, an 

ovipositing female should lay just enough sons to 1) mate with all of her daughters and 

2) bite exit holes in their galls and the syconium wall to ensure their release.  As the 

number of ovipositing foundresses within a syconium increases, each female must lay 

more sons because there is increasing competition between unrelated males for access to 

females (so-called ‘Local Mate Competition’, Hamilton 1967).  Consequently, where 

foundress numbers are low, ovipositing females must ‘weigh up’ the cost of producing 

too many unnecessary males with the possibility of laying too few and having no 

dispersing offspring.  Moreover, where rates of parasitism are high, the probability that 

pollinator males are killed increases.  Given the dependence of female pollinators and 

many NPFWs on male pollinators, insufficient numbers of males means that all wasps 

fail to disperse to a new host and therefore achieve zero reproductive success.   

 In Ficus racemosa, syconia can reach the post-floral (E) stage without wasps 

exiting, despite wasps developing in many ovules (personal observation).  This scenario 

has, to my knowledge, failed to be clearly acknowledged in the literature with the 

exception of a brief mention in F. craterostoma where such syconia have been termed 

‘coffin figs’ (Greeff 2002).  Unexited F. racemosa syconia appear red and swollen with 

no exit holes and, if opened by hand, release many hundreds of wasps.  Whilst some 

NPFWs can exit syconia themselves (Cook and Power 1996; Hill 1967; West et al. 1996; 

Peng et al. 2005), members of the Sycophaginae and Sycoryctinae cannot.  The NPFW 

community of F. racemosa is composed of wasps from only these two taxa and they are 

therefore unable to emerge from syconia unaided.  For these ‘unexited’ syconia, all 

wasps are therefore likely to suffer death without dispersal.  The tree itself also incurs a 

cost, as pollen from these fails to be dispersed; however, providing that wasps in at least 

some syconia on the tree exit normally, this cost is probably small.   

I consider (1) whether failure to produce an exit tunnel in F.racemosa syconia is 

explained solely by the presence of too few pollinator males, and (2) whether low male 

count is a consequence of a) developmental mortality from parasite attack and/or b) low 

foundress number (i.e. too few males laid by foundresses).  I estimated the natural 

frequency of fruit on F. racemosa trees where the wasps fail to emerge, and 

experimentally manipulated male numbers to determine how many males are necessary 

for wasp emergence.  I also measured the naturally occurring variance in the pollinator 

sex ratio and the relative abundance of NPFWs in syconia from which wasps dispersed 

successfully and those in which all wasps were ‘imprisoned.’   
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3.3 Materials and methods 

3.3.1 Study species 

Ficus racemosa (section Sycomorus) is a monoecious fig species, where male 

and female flowers are produced within the same syconium (Cook and Rasplus 2003).  

It favours swampy soil in moist valleys (Yang et al. 2000) or along rivers and is widely 

distributed, occurring from India, through south-east Asia to northern Australia (Yang et 

al. 2000).  Unlike many monoecious figs that produce their syconia along branches, 

F.racemosa produces fruit that hang in clusters at the end of thin stems (racemes) that 

protrude from its trunk.  Ficus racemosa is pollinated by Ceratosolen fusciceps.  Five 

species of non-pollinating fig wasps (NPFWs): Apocrypta westwoodi, A. sp 2. 

(Chalcidoidea: Sycoryctinae), Platyneura testacea, P. mayri and P. agraensis 

(Chalcidoidea: Sycophaginae), are known to be associated with F. racemosa in China 

(Wang and Zheng 2008) and India (Proffit et al. 2007).  Recent evidence suggests that P. 

testacea and P. mayri are gall-formers, A. westwoodi and A. sp. 2 are their parasitoids 

and Platyneura agraensis is the parasitoid of C. fusciceps (Wang and Zheng 2008).  

Work for this study was carried out in Townsville, Australia (19° 15' 0 S, 146° 48' 0 E) 

during May - August 2007 and September - December 2008.  

 

3.3.2 Estimation of natural rates of unexiting syconia 

Between September - December 2008, I measured the maximum widths of 87 C-

stage syconia using callipers (Table 3.1).  Syconium size was recorded daily until wasp 

emergence, or until syconia dropped from their racemes, providing an estimate of the 

natural occurrence of syconia where wasps fail to emerge. 

 

Table 3.1 Numbers of C-stage syconia from different trees and study sites, followed through 

development. 

Study site Tree Total syconia 

Aplins wier AW1 10 

Aplins wier AW2 4 

Aplins wier AW3 14 

Cranbrook Park 1 8 

Palmetum P1 7 

Riverside gardens R3 10 

Riverside gardens R1 14 

University U1 8 

University U2 4 

University U3 8 
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3.3.3 Comparison of wasp composition between D and E-stage syconia 

Between May - August 2007, I collected 28 E-stage syconia without exit holes, 

and 17 D-stage syconia where the wasps had not yet emerged (Table 3.2).  Once 

collected, each syconium was placed individually into plastic collecting pots topped 

with muslin and left in the laboratory under natural conditions for 48 hours.  No wasps 

emerged from any of the E-stage syconia (henceforth ‘unexited syconia’), whilst wasps 

from all D-stage syconia dispersed successfully (‘exited’ syconia).  Individual syconia 

and their associated wasps were stored together in 80% ethanol.  I measured the 

maximum length and width of syconia to the nearest 0.05mm using digital callipers and 

halved each syconium using a razor blade.  All wasps that had successfully emerged 

from their syconium and all those loose within the lumen plus any still in their galls 

were separated into three groups: (i) gall-formers (Platyneura mayri and P. testacea), (ii) 

parasitoids of pollinators (P. agraensis) and (iii) parasitoids of gall-formers (Apocrypta 

westwoodi and A. sp. 2).  Wasps were identified using a binocular microscope at 20x 

magnification.  Congeneric male NPFWs could not be identified to species by eye and 

were therefore assigned to the same proportions as females.  The pollinator sex ratio 

was calculated as the number of male pollinators divided by the numbers of female 

pollinators for each syconium.  The rate of parasitism was calculated as the proportion 

of NPFWs out of all wasps within a syconium. 

 
Table 3.2 Numbers of D (exited) and E (unexited) stage syconia collected.   

Study site Tree D-stage E-stage Total syconia 

Aplins Weir AW1 0 2 2 

Aplins Weir AW2 1 1 2 

Aplins Weir AW3 1 0 1 

Aplins Weir AW4 1 5 6 

Cranbrook park 1 1 0 1 

Pallerenda P1 0 2 2 

Palmetum P8 1 2 3 

Riverside Gardens R16 0 4 4 

Riverside Gardens R18 2 6 8 

Riverside Gardens R2 0 2 2 

Riverside Gardens R3 6 2 8 

Riverside Gardens R4 2 0 2 

Riverside Gardens R8 2 2 4 

 

3.3.4 Manipulating numbers of male pollinators in syconia 

Between October and December 2008, I collected early D-stage syconia 

whenever I encountered fruit at this stage of development.  In the laboratory, each 

syconium was halved using a blade and only those where wasps had begun emerging 

from their galls but male pollinators had not yet begun chewing exit holes (N = 26) were 

retained (Table 3.3).  Female wasps that had emerged from their galls were allowed to 
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disperse whilst (wingless) male pollinators were kept within syconia.  For each 

syconium, I gently removed all visible male pollinators from one half and placed them 

in the other half using tweezers.  Each half was then re-sealed between two matching 

Petri dishes using masking tape.  The masking tape was pierced with holes large enough 

to allow air to enter the Petri dishes but small enough to prevent wasp escape.  Sealed 

dishes were left for 24 hours to allow sufficient time for male pollinators to chew exit 

holes.  I then recorded the number of exit holes and male pollinators in each 

experimental half.   

 

Table 3.3 Number of syconia used from different trees and study sites in the experimental 

manipulation of male pollinator number.   

Study site Tree Total syconia 

Aplins wier AW1 2 

Riverside gardens R3 12 

University U3 1 

Cranbrook park 1 10 

Cranbrook park 2 1 

 

3.3.5 Data analysis  

Data were analysed using R statistical software (R Development Core Team 

2005).  To compare wasp compositions between syconia where wasps exited normally 

with those where they did not, generalised linear models (GLMs) with binomial errors 

were constructed.  The binary response variable was whether (or not) wasps exited their 

natal syconium, whilst the numbers and proportions of pollinators and NPFWs (out of 

all wasps) were included as explanatory variables to investigate their influence on wasp 

emergence.  I controlled for unmeasured variance that could be attributed to 

environmental factors between study sites, trees and syconia by including them as 

random effects in maximal models.  Initial models were simplified to minimum 

adequate models by step-wise deletion using χ
2
 tests to assess the significance of the 

deleted terms (Crawley 2004). Where models exhibited overdispersion, a quasi-

binomial error structure was specified and models were simplified using F tests.  Final 

models were achieved when further removal of terms significantly increased the Akaike 

Information Criterion value (Crawley 2004).  

 

3.4 Results 

3.4.1 Estimation of natural rates of unexiting syconia 

Eighty-seven C-stage syconia were followed daily until wasps exited or the 

syconia dropped from their racemes.  Seventy-five of these developed to maturity.  Of 
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these, wasps exited normally from 72 syconia (96%) whilst the remainder (4%) failed to 

produce exit holes.  

 

3.4.2 Comparison of wasp composition between D and E-stage syconia 

Syconia where wasps failed to emerge had significantly fewer and lower 

proportions of pollinators and lower pollinator sex ratios than syconia where wasps 

dispersed normally (Figure 3.1, Table 3.4).  The lowest number of male pollinators in 

unexited syconia was zero, compared with a minimum of 11 in syconia where wasps 

had successfully emerged.  Neither syconium size nor the numbers of NPFWs 

influenced whether wasps emerged successfully (Table 3.5); however, proportions of all 

NPFWs were significantly higher in unexited compared with exited syconia.  

Proportions of individual NPFW groups were not significantly different among syconia.  

 

 
Table 3.4 Average numbers (S.E.) of wasps in D-stage syconia where wasps emerged normally 

(exited syconia) and E-stage syconia where they did not (unexited syconia).   

Total wasps Exited Unexited 

Total pollinators        176.00  (39.24)           18.61  (3.36) 

   - Male pollinators          67.76  (14.37)             4.18  (1.02) 

   - Female pollinators        108.23  (28.24)           14.43  (2.53) 

Total NPFWs        251.29  (27.17)         209.40  (33.35) 

   - Gall-formers (P. mayri & P.  testacea)          94.03  (19.99)           91.17  (14.90) 

   - P. agraensis parasitoids          22.56  (8.18)             3.69  (2.37) 

   - Apocrypta parasitoids        134.71  (23.42)         114.53  (19.60) 

 
 
Table 3.5 The results of 12 GLMs identifying the influence of pollinating and NFPW numbers 

and proportions (out of all wasps) on whether or not wasps emerged from syconia 

(P.D.E=proportion deviance explained). 

 Variable P t  D.F. P.D.E. 

Number of male pollinators <0.001 -4.25 37 0.75 

Proportion male pollinators <0.01 -3.65 37 0.50 

Number of female pollinators <0.05 -2.32 37 0.42 

Proportion female pollinators <0.05 -2.38 37 0.17 

Pollinator sex ratio <0.05 -2.02 35 0.14 

Syconium volume NS (0.17) -1.39 37 0.04 

Number of NPFWs NS (0.59) -0.54 37 6.36E-03 

  -gall-formers (P. mayri & P. testacea) NS (0.52) -0.64 37 9.14E-03 

  -P. agraensis parasitoids  NS (0.24) -1.19 37 0.04 

  -Apocrypta parasitoids  NS (0.99) -0.01 37 0.01 

Proportion NPFWs <0.005 3.22 37 0.33 

  -gall-formers (P. mayri & P. testacea) NS (0.68) 0.41 37 3.48E-03 

  -P. agraensis parasitoids NS (0.50) 0.68 37 0.01 

  -Apocrypta parasitoids  NS (0.23) -1.23 37 0.03 
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Figure 3.1 The proportion of all NPFWs (white), pollinator sex ratio (dark grey) and the 

proportion of pollinators (light grey) out of all wasps for exited and unexited syconia.  Bars 

represent means± 1 S.E. 

 

 

3.4.3 Male experiment 

Using the male counts from each experiment, syconium halves where wasps had 

successfully emerged had significantly more male pollinators than those with no exit 

holes (P<0.01, z =2.679, proportion deviance explained=0.81, D.F. =51) (Figure 3.2).  

Moreover, although male pollinators began chewing multiple holes, after some time, 

they would collectively focus on only one or two of these.  The result was that a 

maximum of two exit holes were produced even when there were close to 150 males in 

a syconium half (Figure 3.2A).  

 

      

Figure 3.2 The number of emergence holes produced (A) and the likelihood of wasp emergence 

(B) as a function of male pollinator number. 
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3.5 Discussion 

Syconia where wasps failed to exit had fewer and lower proportions of male 

pollinators than syconia where wasps exited normally.  With less than about ten males, 

wasps are unlikely to emerge from these ‘coffin figs’ (Greeff 2002) as the probability of 

an exit hole being produced, decreases (Figure 3.2).  Low numbers and proportions of 

males could be a consequence of (1) low foundress number (Herre 1985, 1987; 

Kinoshita et al. 1998) and/or (2) increased mortality through parasitism.  As mature 

syconia were immersed in a solution of ethanol before they were dissected, foundress 

remains could not be distinguished from other female pollinator bodies within the cavity 

so their numbers could not be ascertained.  A lower pollinator sex ratio coupled with 

reduced numbers of both male and female pollinator wasps in unexited syconia, 

however, suggests that foundress number may be an important factor in wasps failing to 

disperse from syconia.   

When a foundress mother oviposits her offspring into syconia where she is the 

only occupant, she lays fewer males than if she were in a syconium where other females 

are also ovipositing because in the latter scenario, there is increased competition for 

mates (Local Mate Competition; Hamilton 1967).  Unexited syconia may therefore 

reflect the situation where fewer foundresses have gained entry and consequently fewer 

males have been laid.  As male pollinators cooperate to chew a single exit hole (personal 

observation), if too few males are laid then no wasps will emerge and the foundress 

mother(s) gains zero reproductive success. 

The second possibility for low male count is mortality through parasitism.  

Despite the proportion of all NPFWs being significantly higher in unexited syconia, 

neither the numbers nor the proportions of P. agraensis (the parasitoid of the 

pollinators), were significantly different across syconia suggesting that pollinating 

wasps were not more heavily parasitised in syconia where wasps did not emerge.   

 Although male pollinating wasps are crucial in the production of exit holes in 

syconia, some wasps may be released from their natal syconium by other means.  Seed 

dispersers partially eating syconia (Handley et al. 1991; Kalko et al. 1996) and ripened 

fruit falling to the floor and breaking open may occasionally provide trapped wasps with 

some possibility of escape.  Other insect fauna resident on F. racemosa (Yang et al. 

2003) may also provide a more consistent avenue for wasp dispersal.  Within the 

Lepidoptera, members of the Crambidae, Oecophoridae and Pyralidae families are 

known to feed internally on syconia.  Moth and beetle larvae will often tunnel through 

syconia late in their development (Basset et al. 1997), leaving large holes in the 
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syconium that could serve as enlarged exit holes for trapped wasps.  Ficus racemosa, in 

particular, appears to have many more Lepidopteran larvae in its syconia than other fig 

species within the same geographical area (e.g. F. rubiginosa, F. microcarpa, F. 

benjamina, personal observation).  The identity of these species, however and the 

effects of their larvae on the fig trees and their associated wasps have received almost 

no study (but see Sugiura and Yamazaki 2004).  Despite this, recent work on F. 

racemosa in Townsville has identified three moth species whose larvae often 

temporarily inhabit its figs: Autoba dispar (Noctuidae, Acontiinae), Cirrhochrista sp. 

(Pyralidae, Pyraustinae), and Tirathaba sp. (Pyralidae, Galleriinae) (Lin 2007).  At least 

one pyralid moth species (Pachybotys spissalis) is currently considered a predator of fig 

wasp larvae (Saguira and Yamazaki 2004), suggesting that some of these inhabitants 

may represent a double-edged sword to trapped fig wasps.  Nonetheless, I have 

observed many wasps escaping through the holes made by these insects, and this does 

seem to provide some means of escape for wasps that would otherwise remain 

imprisoned.   

  To summarise, unexited Ficus racemosa syconia are most likely to be explained 

by low numbers of foundresses entering syconia and laying too few males to produce 

dispersal holes.  The situation appears universally detrimental, leaving all developing 

larvae and the foundress pollinators with zero reproductive success and the fig with 

pollen that does not get dispersed.  Entrance holes produced by other insects tunnelling 

through syconia may provide fig wasps with a viable means of escape on some 

occasions but this needs further study.  More work is needed to assess their full impact 

on the fate of fig wasps trapped inside these syconia and how likely they are to act as 

indirect mutualists of the system.    
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                                                                                 Chapter 4 

The impact of the internally ovipositing fig wasp, Philocaenus 

barbarus (Hymenoptera: Sycoecinae), on wasp and seed 

production in Ficus burkei 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Morphological coevolution between pairs of unrelated pollinating (top) and internally 

ovipositing non-pollinating (bottom) fig wasps that enter syconia to reproduce (Adapted from 

van Noort and Compton 1996).  
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4.1 Abstract 

Fig trees and their pollinating wasps are partners in a 60 million year old obligate 

mutualism; however, the interaction is usurped by non-pollinating fig wasps (NPFWs) 

that use Ficus ovules to reproduce.  Although the vast majority of NPFWs oviposit from 

outside the fig wall, a subset enters syconia at the same time as the associated 

pollinators.  These internally ovipositing non-pollinating fig wasps (INPFWs) and their 

impacts on the fig-pollinator system have been little studied.  I investigate the influence 

of an internally ovipositing non-pollinating wasp, Philocaenus barbarus, on seed and 

pollinator wasp production in the African, Ficus burkei.  Results indicate that P. 

barbarus offspring did not occur in the absence of the pollinator wasp, Elisabethiella 

stuckenbergi, and that its galls clustered at the fruit’s centre.  In their absence, E. 

stuckenbergi offspring occupied longer flowers than in syconia shared with P. barbarus.  

Whether parasitising pollinator larvae or competing for favoured inner ovules, the 

presence of P. barbarus had a negative impact on the male function of F. burkei (pollen 

dispersal), but did not affect its female function (seed production).  I suggest the need 

for further work on this system to determine the trophic status of P. barbarus, and to 

better assess its impact on the pollinating wasps of F. burkei.  Moreover, increasing 

studies on the impact of INPFWs are necessary to assess their overall influence on the 

fig/ fig-wasp mutualism.   
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4.2 Introduction 

Fig trees (Ficus, Moraceae) and their agaonid pollinators (Chalcidoidea, Agaonidae) 

represent a 60 million year old obligate pollination mutualism (Janzen, 1979a; Weiblen, 

2002; Cook and Rasplus, 2003; Herre et al. 2008).  The wasps pollinate the fig trees and 

in return, the flowers within fig fruit (syconia) act as nurseries for developing fig wasp 

larvae.  The system is obligate as neither fig tree nor pollinator wasp can reproduce in 

the absence of the other partner.  The life cycle begins when female agaonid wasps enter 

receptive fig fruit (syconia) through a narrow slit called the ostiole.  Coevolution in the 

morphologies of fig ostioles and their internally ovipositing wasps has resulted in 

females showing extreme adaptations for ostiole entry such as flattened heads and 

bodies, and mandibles covered in multiple rows of backward pointing teeth (van Noort 

and Compton 1996).  Females that have successfully entered syconia transfer pollen 

onto the stigmatic surfaces of some flowers whilst also laying eggs down their styles.  

They lay as many eggs as possible before dying within the syconium.  Weeks later, their 

offspring emerge and mate, and winged females collect pollen from their natal syconia 

before dispersing. 

 Alongside pollinating wasps, a suite of non-pollinating fig wasps (NPFWs) can 

also oviposit into fig ovules but generally provide no benefit to a fig’s male function.  

Whilst the majority of NPFWs oviposit into Ficus ovules from outside the fig wall using 

telescopic ovipositors (Kerdelhué and Rasplus 1996), a minority enter syconia similarly 

to pollinating wasps and oviposit internally.  With the exception of Ceratosolen galili in 

F. sycomorus (Compton et al. 1991) and Eupristina sp. in F. altissima (Peng et al. 2008), 

internally non-pollinating fig wasps (INPFWs) do not belong to the family Agaonidae 

and instead generally derive from the subfamilies Sycoecinae, Sycophaginae and 

Otitesellinae.  Like pollinating agaonids, they possess morphological adaptations for 

ease of entry through the ostiole (van Noort and Compton 1996), and often enter 

syconia at the same time as pollinators (Galil et al. 1970).   

Pollination by fig wasps can occur actively or passively.  Where fig trees are 

passively pollinated, syconia have many male flowers and produce large quantities of 

pollen (Kjellberg et al. 2001).  Once wasps have emerged from their galls, pollen is 

scattered throughout the syconium and is distributed on the bodies of the wasps where it 

is carried (passively) to new receptive syconia.  Actively pollinated syconia in contrast, 

have a lower anther to ovule ratio (Kjellberg et al. 2001), produce far less pollen and 

have pollinators with specialised morphological adaptations (coxal combs and pollen 

pockets) involved in the collection and storing of pollen.  Although INPFWs do not 



                                                       4.  Internally ovipositing non-pollinating fig wasps in F. burkei 

 57 

actively pollinate fig flowers (Jousselin et al. 2001a; Zhang et al. 2008b), where they 

are associated with passively pollinated fig species, they can often pollinate as well as 

(Zhang et al. 2008b), or even better than (Jousselin et al. 2001a) the ‘legitimate’ 

pollinator.  Despite this, INPFWs still generally rely on the presence of the agaonid 

pollinator for their offspring to develop (Zhang et al. 2008a, b; but see Kerdelhué and 

Rasplus 1996). 

 Half of all known fig species are monoecious where male and female flowers 

and wasps and seeds develop together within syconia.  Within these syconia, female 

flowers are variable in length (Figure 1.3A).  Short flowers have ovules that develop 

close to the fig wall (outer flowers) whilst the ovules of long flowers develop close to 

the inner syconium cavity (inner flowers) (Ganeshaiah et al. 1995, 1999; Jousselin et al. 

2001a, 2004).  Ovipositing agaonid females favour inner flowers to lay their eggs over 

those closer to the fig wall (Nefdt and Compton 1996; Jousselin et al. 2001b; Weiblen 

2002; Yu et al. 2004; Yao et al. 2005; Dunn et al. 2008b; Herre et al. 2008).  Flowers 

that are pollinated but fail to receive a wasp egg (often outer flowers) develop into seeds.  

Monoecious fig species therefore often show stratification of gall occupants with fig 

wasps developing in long and intermediate length (inner) ovules whilst seeds develop in 

shorter, outer ovules.  To my knowledge, no study has yet investigated the ovule lengths 

occupied by INPFWs.  Because they enter receptive syconia at a similar time to 

pollinating agaonids (Cook and Rasplus, 2003; Zhang et al. 2008a, b), INPFWs may use 

the inner flowers preferred by pollinators and therefore compete directly with them for 

oviposition sites.  Despite increasing studies on the impact of externally ovipositing 

NPFWs on the fig-pollinator mutualism (West et al. 1996; Kerdelhué and Rasplus 2006; 

Dunn et al. 2008b), studies on NPFWs that enter syconia to oviposit are still relatively 

rare, and their impact on the fig-pollinator system is even less well studied (but see 

Jousselin et al. 2001b; Zhang et al. 2008a, b).   

 The purpose of this paper is to measure the potential impact of INPFWs on the 

fig-pollinator interaction in the African fig, Ficus burkei.  I measure differences in the 

morphology between the INPFWs and the associated agaonid pollinator, and compare 

the lengths of pollinator occupied flowers with those containing INPFWs, externally 

ovipositing parasitic NPFWs and seeds.  I also measure the relative abundance of, and 

test for the influence of INPFWs on pollinator and seed development. 

 

 

 



                                                       4.  Internally ovipositing non-pollinating fig wasps in F. burkei 

 58 

4.3 Materials and methods 

4.3.1 Study species 

Ficus burkei is evergreen or semi-deciduous and grows up to eight metres in height.  It 

grows in savannah woodland and wet or dry forests, and is planted as a shade tree in 

sub-urban areas.  It is a relatively widespread species, found from South Africa to 

Ethiopia and Senegal (Berg and Wiebes 1992).  Ficus burkei is actively pollinated by 

Elisabethiella stuckenbergi Grandi (van Noort and Compton 1996); however, 

Alfonsiella brongersmai Wiebes and A. longiscapa Joseph also pollinate and oviposit 

among its flowers.  A further 25 species of fig wasps are associated with F. burkei 

(Bouček et al. 1981).  Two of these, Crossogaster odorans Wiebes and Philocaenus 

barbarus Grandi, are INPFWs.  In the samples collected for this study, E. stuckenbergi 

was the only pollinator, and P. barbarus the only INPFW present.  As F. burkei is 

actively pollinated (van Noort and Compton 1996), P. barbarus, having neither coxal 

combs nor pollen pockets, plays no significant role in pollination (Vovlas et al. 1998). 

 

4.3.2 Collection of syconia and data recording 

During January and February 2007, 28 early D-stage syconia (prior to wasp emergence; 

Galil and Eisikowitch 1968a) from four F. burkei trees in Grahamstown, South Africa 

were collected by JMC and DD.  Immediately after collection, syconia were stored in a 

plastic container filled with 80% ethanol.  In the laboratory, each syconium was 

carefully divided into eighths using a razor blade.  For 18 syconia, each female flower 

was carefully removed with fine forceps and placed into a watch glass containing 100% 

ethanol for categorisation and measurement.  The remaining 10 syconia were also sliced 

into eighths; however, only a quarter of all flowers were used for further analysis.  To 

do this randomly, flowers were chosen by systematically removing every fourth flower, 

starting from one end of a syconium segment and then working towards the opposite 

end (see Dunn et al. 2008b for details).  Actual and estimated counts of seeds and wasps 

using this method are unlikely to differ significantly (Kerdelhué et al. 1997).  The length 

of each selected flower was measured to the nearest 0.01 mm using an eyepiece 

graticule mounted on a binocular microscope.  Flower length was determined as the 

total flower length (pedicel + ovary or wasp gall) (Figure 1.3A) excluding what 

remained of the style.  After measurement, each flower was assigned to one of four 

categories: (1) Seeds: pollinated flowers that had developed into seeds, (2) Pollinator: 

galls containing pollinator wasps (E. stuckenbergi), (3) Parasite: galls containing 

externally ovipositing NPFW species similar in size to pollinators and classed as 
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parasitoids or inquilines (Philotrypesis parca and Sycoryctes/ Sycoscapter spp.), or (4) 

Internally ovipositing non-agaonid: galls containing the INPFW, P. barbarus.  Not all 

syconia contained wasps from all categories (Table 1). My aim was to identify any 

spatial stratification of seeds, pollinators, externally ovipositing NPFWs and INPFWs, 

therefore I did not include galls containing large galling wasps or their parasites 

(Otiteselline, Epichrysomalline or Eurytomid wasps) in the data set.  

I measured the total body length and the ovipositor length to the nearest 0.01 

mm, for each E. stuckenbergi and P. barbarus female.  Total body length was 

determined as the dorsal distance from between the mandibles to where the ovipositor 

joins the abdomen.  The total length of the functional ovipositor (first and second 

valvulae) was measured after its removal from the abdomen (Nefdt and Compton 1996).  

Measurements were taken using an eyepiece graticule and microscope at 20x 

magnification. Syconium length and width were measured to the nearest 0.05mm using 

callipers, to enable syconium volume ( 3

3

4
rπ ) to be estimated.  Any wasps loose in the 

lumen (mainly male E. stuckenbergi) were counted. 

 

4.3.3 Data analyses   

The data from all syconia were pooled and then analysed using R statistical software 

(version 2.3.1.; R Development Core Team 2005).  For tests involving counts, data from 

those syconia from which a quarter of flowers were sampled were quadrupled 

(Kerdelhué et al. 1997).  To confirm the accuracy of this method, I created two sets of 

generalised linear models prior to the final analyses; one using only counts from whole 

syconia (N = 18), and the other using counts from all 28 syconia.  In each case, the same 

general trends were apparent so I present results from the pooled dataset (N = 28 

syconia).  In all models ‘site’ was a random factor removing unmeasured variance that 

could be attributed to differences between localities (West and Herre 1994; Cook and 

Power 1996; Dunn et al. 2008a, b).  Syconium volume was included in all models as a 

covariate.  Where appropriate, models were simplified by backwards elimination by the 

removal of non-significant terms followed by a χ
2
 test (where data were not 

overdispersed), or an F test (where overdispersion was present) to ensure that such 

removals did not significantly increase the residual error of the model (Crawley 2005). 
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4.4 Results 

4.4.1 Spatial stratification of wasps 

A generalised linear model identified that INPFWs (P. barbarus), pollinators (E. 

stuckenbergi), externally ovipositing non-pollinating wasps (NPFWs), and seeds were 

significantly spatially stratified within syconia (P < 0.0001, D.F. = 2717, proportion 

deviance explained = 0.10).  In all instances, NPFWs occupied ovules closest to the 

outer wall of the syconium.  Philocaenus barbarus offspring were not present in syconia 

that did not also contain E. stuckenbergi (Tables 4.1 and 4.2), and where they were 

present, ovules containing P. barbarus were longer than those containing E. 

stuckenbergi (Figure 4.1).  Moreover, flowers containing E. stuckenbergi were shorter 

in syconia where P. barbarus was present compared to syconia where they were absent 

(P < 0.0001, D.F. =1337, proportion deviance explained = 0.10).  

 

      

 

Figure 4.1 Mean (± S.E.) flower lengths for galls containing INPFWs (P. barbarus), pollinators 

(E. stuckenbergi), externally ovipositing parasites (Philotrypesis parca or Sycoryctes/ 

Sycoscapter spp.) and seeds. Coloured bars represent presence (white) or absence (grey) of P. 

barbarus.  

 

4.4.2 Does P. barbarus influence pollinator and seed production? 

I included syconia containing pollinators and/or INPFWs in a Freeman-Halton extension 

of the Fisher exact probability test for a 2x3 contingency table (Table 4.1).  Results 

indicated that the observed numbers of syconia containing INPFWs and pollinators were 

significantly different to what would be expected if the wasps were not influenced by 

(i.e. were independent of) one another’s presence (p<0.0001).  
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Table 4.1 Contingency table for the observed (and expected) number of syconia containing 

INPFWs and pollinators, with and without P. barbarus. 

   Syconia Just INPFW Just Pollinator                     Both        Total 

Without P.barbarus 0 (0) 21 (15.8) 0 (5.25) 21 

With P. barbarus 0 (0) 0  (5.25) 7 (1.75) 7 

Total 0 21 7 28 

 

I also investigated in greater detail, the direction of the effect P. barbarus had on 

pollinator and seed production within syconia by constructing three generalised linear 

models with poisson (count data) and binomial (proportional data) error structures.  The 

dependent variable for each model was: (1) the number of pollinator wasps per 

syconium, (2) the proportion of pollinator wasps out of all wasps in a syconium and 3) 

the number of seeds in each syconium.  For each model, the presence/absence of P. 

barbarus, and site and syconium volume were used as the explanatory factor and as 

covariates respectively.  Where models exhibited overdispersion, quasi-poisson and 

quasi-binomial error structures were used.   

Syconia containing both P. barbarus and E. stuckenbergi had fewer wasps 

overall and fewer numbers and proportions of pollinators than syconia in which P. 

barbarus was absent (Figure 4.2).  There was no difference in either seed production or 

total numbers of externally ovipositing NPFWs between syconia that contained P. 

barbarus and those that did not (Table 4.3). 

 

 

 

Figure 4.2 Numbers (± S.E.) of all wasps (white), pollinators (dark grey), externally ovipositing 

NPFWs (light grey) and internally ovipositing NPFWs (dotted) when P. barbarus was present 

or absent among syconia. 
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Table 4.2 Summary of wasps found in 28 Ficus burkei syconia. Each row represents possible 

combinations of pollinating wasps, externally ovipositing NPFWs and INPFWs in a syconium 

(I.e. row one represents the four syconia that only contained E. stuckenbergi.  ES for the first 

row represents the mean number of E. stuckenbergi in syconia containing only these wasps).  

Wasp 
Trophic 
status 

Syconia 
(%)  ES (s.e)  PB (s.e)  Para  (s.e) 

E.stuckenbergi (ES) Pollinator 4(14.28) 103.75 (17.86)   - - 

P. barbarus (PB) INPFW 0(0) - - - 
Philotrypesis/ 
Sycoscapter/ 
Sycoryctes (Para) 

Externally 
ovipositing 

NPFW 0(0) - - - 

ES+PB  0(0) - - - 

ES+Para  17(60.71) 92.41(9.69) - 8.18(3.63) 

PB+Para  0(0) - - - 

ES+PB+Para  7(25) 32.43(4.38) 33.86(5.60) 5.71(2.41) 

Seeds  28(100) 79.04(16.94) 8.46(7.92) 6.39(3.34) 

 

Table 4.3 Results of generalised linear models illustrating the influence of P. barbarus presence 

(p) and absence (a) on wasp and seed numbers (N) and proportions (P) within syconia. (Para = 

Philotrypesis/ Sycoscapter/ Sycoryctes wasps, P.D.E. = proportion deviance explained, p = 

mean number/ proportion of wasps in syconia containing P. barbarus).      

Variable p (s.e) a (s.e) P t D.F. P.D.E 

Total wasps (N) 72 (5.32) 101.19 (5.35) <0.01   -3.01 26 0.32 

Pollinators (N) 32.43 (3.31) 94.57 (5.49) <0.001 -7.04 26 0.71 

Pollinators (P) 0.22 (0.02) 0.50 (0.03) <0.001 -5.68 26 0.58 

Para (N) 5.71 (1.82) 6.62 (1.59) NS (0.84) 0.2 23 0.42 

Seeds (N) 46.71 (7.53) 57.24 (6.68) NS (0.44) -0.79 34 0.25 

 

 Elisabethiella stuckenbergi females were smaller (mean body length ± s.e = 1.30 

± 0.004 mm) than female P. barbarus (mean body length ± s.e = 1.41 ± 0.007 mm; F1, 

956 = 138.14, P < 0.0001).  The result of an ANCOVA including body size as a covariate 

and species as a factor, however, found that P. barbarus females had shorter ovipositors 

than E. stuckenbergi females (F1, 878 = 2672.41, P < 0.001) (Figure 4.3).  

 

                  

Figure 4.3 Mean (± S.E.) ovipositor lengths of female pollinators (E. stuckenbergi) and 

INPFWs (P. barbarus).  
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4.5 Discussion 

Syconia containing P. barbarus had significantly fewer pollinating wasps and no 

significant difference in either the numbers of seeds or the numbers of externally 

ovipositing NPFWs.  The pollinator, E. stuckenbergi, occupied shorter ovules closer to 

the fig wall when P. barbarus was present compared with syconia where it was absent.  

None of the collected syconia contained only P. barbarus wasps suggesting that it may 

rely on E. stuckenbergi for its offspring to successfully develop.  It is possible that these 

results do not reflect a real pattern but are simply the result of a limited sample size; 

however, I consider this unlikely because similar patterns have been recently reported in 

other INPFW species (e.g. Zhang et al. 2008a, b).  Consequently, I have assumed that P. 

barbarus is dependent on E. stuckenbergi entering F. burkei syconia, and that only 

syconia where both species co-habit, or syconia containing only E. stuckenbergi, 

develop fully.  Given these assumptions, I propose two explanations for the results: 1) 

that Philocaenus barbarus is a gall-former but only enters syconia after entry by E. 

stuckenbergi, or 2) that it is the parasitoid of E. stuckenbergi larvae. 

As a gall-former, the reasons P. barbarus may first require entry by E. 

stuckenbergi females may be two-fold: a) entry by the smaller E. stuckenbergi may help 

widen the ostiole to facilitate entry by P. barbarus, or b) only syconia where at least 

some flowers have been pollinated do not abort, and/or only these syconia nurture P. 

barbarus larvae.  In F. curtipes, the INPFWs Diaziella yangi and Lipothymus sp. do not 

enter syconia if it has not been entered by the associated agaonid, Eupristina sp. (Zhang 

et al. 2008b).  If, however, the head of a female E. sp. is allowed to enter the ostiole and 

is then immediately removed, D. yangi and L. sp. will enter syconia immediately 

(although their offspring will fail to develop).  This suggests that entry may be 

dependent on the presence of a chemical pheromone around the ostiole, or through the 

physical enlarging of the ostiole by the agaonid (Zhang et al. 2008b).  In F. burkei, a 

gall-forming P. barbarus may enter syconia at roughly the same time, or after pollinator 

entry.  If entry by P. barbarus females occurs before pollination, there is a risk that an E. 

stuckenbergi female may not enter and a) the syconium may then abort (Marussich and 

Machado 2007, but see Bronstein 1991; West et al. 1996), or b) not all P. barbarus 

offspring will develop fully (Herre and West 1997; Jousselin et al. 2003b).  Given that 

seed set was unaffected by the presence of P. barbarus, it is unlikely that P. barbarus 

enters syconia after E. stuckenbergi as I would expect more (not fewer) emerging wasps, 

and fewer seeds among syconia where both species co-habited syconia compared to 

those where only E. stuckenbergi entered.  If, however, P.barbarus enters syconia at 
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roughly the same time as E. stuckenbergi, there may be increased pseudo-interference 

(i.e. decreased search efficiency as a result of increased wasp density) which could 

delay the oviposition rate of females.  Moreover, being larger in total body size, P. 

barbarus may physically interfere with E. stuckenbergi oviposition, reducing the 

number of eggs each pollinator lays and the consequent number of offspring that emerge 

from each syconium (Ramirez 1970a; Gibernau et al. 1996; Moore and Greeff 2003).   

 An alternative explanation for the results is that P. barbarus is not a gall-former, 

but a parasite (parasitoid or inquiline) of E. stuckenbergi.  The lack of an increase in 

seed number in syconia containing P. barbarus, coupled with a failure to find syconia 

containing only this INPFW provides good evidence that P. barbarus may rely on galls 

containing pollinator larvae in order to reproduce.  That E. stuckenbergi offspring were 

located in longer-styled flowers when they co-habited syconia with P. barbarus may 

represent those flowers that occupy enemy-free space from P. barbarus ovipositors.  

Recent work by Dunn and others (2008b) identified that externally ovipositing 

parasitoids can be indirect mutualists of the fig/ wasp system by encouraging 

foundresses to show a preference for inner flowers where their offspring occupy a 

spatial refuge from parasite attack.  The mutualistic impact of NPFWs on the system 

arises from a pollinator’s relative avoidance of outer flowers, facilitating seed 

development.  Like NPFWs, INPFWs may also affect the value of ovules to ovipositing 

pollinators.  If P. barbarus wasps are parasites of E. stuckenbergi, ovipositing 

pollinators may avoid the innermost ovules to reduce the risk of parasitism.  Through 

the avoidance of outer ovules (from parasitism by externally ovipositing NPFWs) and 

inner ovules (from parasitism by INPFWs), intermediate-length flowers may have the 

lowest overall likelihood of larval parasitism among pollinators.  The positioning of 

Elisabethiella stuckenbergi larvae in intermediate length ovules may therefore reflect 1) 

an active avoidance of inner (and outer) ovules by ovipositing foundresses, or 2) the 

resultant positions of unparasitised larvae that occupy a refuge from their parasites that 

are unable to reach them.  These results alone cannot differentiate between the two 

possibilities. 

 Further experiments are necessary to elucidate the full impact of P. barbarus on 

E. stuckenbergi females.  Introducing recently emerged P. barbarus into receptive 

syconia and immediately bagging them to prevent further entry would identify whether 

or not P. barbarus can develop in F. burkei ovules in the absence of E. stuckenbergi.  If 

syconia abort, the introduction of E. stuckenbergi females with their ovipositors 

removed would elucidate whether P. barbarus is simply a gall-former or a parasite of E. 

stuckenbergi larvae.  Field observations on the order of entry of E. stuckenbergi and P. 
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barbarus females, along with their oviposition behaviour in halved syconia would 

clearly help to establish whether P. barbarus uses its larger size to physically interfere 

with E. stuckenbergi during oviposition.  Finally, the apparent competition for the same 

subset of ovules suggests that P. barbarus also displays a preference for short-styled 

flowers.  This may be because a) short-styled flowers are easier to oviposit into 

(Verkerke 1986, 1988), b) short-styled ovules are the only ones accessible as P. 

barbarus wasps posses shorter ovipositors than E. stuckenbergi  (i.e. it reflects a 

morphological constraint and could potentially provide one of the few real examples of 

the short ovipositor hypothesis (Ramirez 1970a)), and/ or c) because P. barbarus 

offspring are also parasitised by externally ovipositing NPFWs and offspring laid in 

short-styled flowers are at lower risk from parasite attack (Dunn et al. 2008b). 

 In conclusion, the constant rate of seed production regardless of the presence of 

P. barbarus suggests that this INPFW imposes no seed production costs on F. burkei 

syconia and that its presence does not lead to any increase in pollination services over 

and above that provided by the ‘legitimate’ pollinator.  This concurs with some other 

INPFW species (Zhang et al. 2009) but is contrary to others (Jousselin et al. 2001b).  

Although I have established that P. barbarus has a negative effect on E. stuckenbergi 

pollinators, further work is needed to determine its trophic status and to clarify the full 

extent of its impact on the system.  
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                                                                                 Chapter 5 

Invasion of the green body snatchers: how Oecophylla 

smaragdina reduces parasitism in Ficus racemosa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oecophylla sp. worker (Weber 1946)
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5.1 Abstract 

 Figs and fig wasps form a classic mutualistic system, but this is also influenced 

by interactions with other species.  Fig wasps are often predated upon by ant workers 

resident on fig trees, but predatory ants may also have positive effects on the fig/wasp 

mutualism as they can discourage externally ovipositing non-pollinating fig wasps 

(NPFWs) from stopping on the surface of the fig fruit (syconia) to lay eggs.  I tested 

whether patrolling by the green tree ant, Oecophylla smaragdina, decreases the 

proportions of non-pollinating gall-formers and parasitoids emerging from Ficus 

racemosa syconia. 

Syconia treated with Tanglefoot to exclude ants nurtured increased proportions 

of NPFWs and reduced proportions of pollinators.  Survey data also highlighted a 

significant negative correlation between ant density and the proportion of emerging 

parasitoids.  This negative influence of O. smaragdina on numbers of developing 

NPFWs suggests that they may be considered indirect mutualists of the fig/ pollinator 

system by reducing parasitism in F. racemosa syconia.  Both the ubiquity of ants in the 

tropics and their presence on fig trees suggests that the dynamics of fig/ fig wasp 

interactions may often be influenced by these third-party mutualists. 
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5.2 Introduction 

The fig/ wasp mutualism represents over 60 million years of stability (Rønsted et 

al. 2005) between the pollinating fig wasps; a fig tree’s sole pollen disperser, and the 

flowers within fig fruits (syconia), which are the only places where wasp offspring can 

develop.  The life cycle begins on fig trees where young buds develop into larger 

syconia which are receptive to pollinating wasps.  Each syconium is completely 

enclosed with the exception of the ostiole - a tiny hole which opens briefly to enable 

wasp access.  Female pollinators that enter syconia pollinate and oviposit among the 

flowers.  They die inside the syconium and their offspring develop by galling fig ovules.  

Non-pollinating fig wasps (NPFWs) also lay their eggs into fig flowers; however, most 

species do so from outside the syconium and do not contribute to pollination.  Some 

NPFWs will oviposit in empty ovules which they gall themselves (gall-formers), whilst 

others (inquilines or parasitoids) oviposit into occupied ovules.  Weeks later, once fully 

developed, wasps emerge from their galls and mate, and male pollinators tunnel holes 

through the fig wall, facilitating wasp dispersal. 

 Fig trees are home not only to fig wasps, but also to arboreal ant species that, as 

foraging opportunists, are attracted to the wasps (Bronstein 1988b; Compton and 

Robertson 1988, 1991; Dejean et al. 1997; Schatz and Hossaert-McKey 2003; Schatz et 

al. 2006).  During syconium receptivity and wasp emergence, fig wasps are abundant 

outside syconia and are vulnerable to predation by patrolling ants (Bronstein 1988b; 

Compton and Robertson 1988; Schatz and Hossaert-McKey 2003; Schatz et al. 2008).  

There is growing evidence, however, that predatory ants reduce parasitism within 

syconia by discouraging externally ovipositing non-pollinating fig wasps from 

prolonged oviposition (Schatz et al. 2006).  Cushman and others (1998) studied the 

African F. sur where the presence of a homopteran attracted ants which, in turn, reduced 

the numbers of gall-formers and parasitoids emerging from syconia.  Another study 

investigated the effects of ants on the numbers of NPFWs landing on F. condensa (in 

Brunei), F. carica (France) and F. racemosa (India) (Shatz et al. 2006).  Whilst the 

former study involved a homopteran-tending ant species and an African fig species, the 

latter only investigated the numbers of parasites observed on the surface of syconia 

rather than their actual numbers developing within the fig ovules.  This paper 

investigates whether densities of the non-tending predatory ant species, Oecophylla 

smaragdina, on F.racemosa syconia 1) vary with syconial development under natural 

conditions to coincide with periods of wasp abundance, and/or 2) influence the 

proportions of pollinating and non-pollinating fig wasps emerging from syconia. 
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5.3 Materials and methods 

Observations and experiments were performed on Ficus racemosa trees between 

September and December 2008 at five sites around Townsville, Australia (19° 15' 0 S, 

146° 48' 0 E).  Ficus racemosa, also known as the cluster fig, is so-called as its fruit 

grow in bunches from thin branches (racemes) that protrude from the trunk and primary 

branches of the tree.  It is pollinated by Ceratosolen fusciceps; however, its flowers are 

also home to five species of non-pollinating fig wasps (NPFWs) that oviposit through 

the fig wall from outside the syconium: Platyneura mayri, P. testacea, P. agraensis, 

Apocrypta westwoodi and an undescribed A. sp. 2.  Platyneura testacea and P. mayri are 

gall-formers whilst Apocrypta sp. 2 is a parasitoid of P. testacea (Wang and Zheng 

2008).  These three species oviposit into ovules before syconia have been entered by 

pollinators (Kerdelhué et al. 2000; Weiblen 2002, Wang and Zheng 2008).  Apocrypta 

westwoodi and P. agraensis oviposit last, doing so into occupied ovules after syconia 

have been pollinated.  Apocrypta westwoodi is considered the parasitoid of P. mayri 

whilst P. agraensis parasitizes C. fusciceps larvae (Wang and Zheng 2008). 

The dominant and most prevalent ant species resident on the trees used in this 

study was the green tree ant, Oecophylla smaragdina, also commonly known as the 

Asian weaver ant.  Workers use silk extracted from their larvae to weave together leaves 

that form their characteristic tree top nests (Hölldobler and Wilson 1990).  With a diet 

composed mainly of small insects (Way and Khoo 1992; Offenberg et al. 2004), and as 

efficient ambush predators, weaver ants are aggressive deterrents to any intruder and are 

often used as biocontrol agents of food crop pests (Way and Khoo 1991; Peng and 

Christian 2004; Van Mele et al. 2002). 

 

5.3.1 Do numbers of O. smaragdina vary with syconium development? 

I recorded i) the maximum diameter of each syconium, ii) the number of O. 

smaragdina workers observed during 10 seconds and iii) the number of days since the 

first observation of a focal syconium, for each of 194 receptive (pre-pollination) syconia 

(average diameter=1.50cm ±0.04) on 10 F. racemosa trees.  Daily visits were made to 

each syconium between 0600-1200h until syconia were at wasp dispersal stage (D-

stage).  Records of the day of observation enabled fruit of the same developmental stage 

to be grouped together.  Fully developed syconia were collected just before wasp 

emergence and were used in the survey data below.  Where wasp emergence occurred 

before syconia had been harvested, measurements were continued until syconia dropped 

from the trees and allowed ant densities to be observed post-emergence.   



                                                                                                                                          5.  Ants on fig trees 

 

 70 

5.3.2 Does O. smaragdina influence proportions of emerging fig wasps? 

a) Natural conditions (survey data): 

Of the original 194 syconia, only 69 developed to wasp dispersal stage (D stage, 

Galil and Eisikowitch 1968a).  The remainder suffered premature abortion (N=59), were 

invaded by moth larvae which precluded further development (Bronstein 1988b) (N=2), 

or were picked off by passers-by (N=37). 

 

 

Figure 5.1 Variation in ant abundance in weakly (A) and more heavily (B, C) ant patrolled F. 

racemosa syconia.  Photographs taken by S. Al-Beidh. 

 

b) Ant exclusion experiments 

For ant exclusion trials, I selected 21 syconia from four trees that were not 

included in the previous data set.  Closely situated pairs of pre-receptive syconia were 

identified and surrounding non-experimental fruit were removed.  One syconium from 

each selected pair (N=10) was left to develop naturally (control), whilst the other (N=11) 

was treated with Tanglefoot.  Tanglefoot is a sticky, non-toxic substance that is effective 

at excluding ants (and other walking predators) on trees (Stephenson 1982; Smiley 1986; 

Mackay 1991; Bishop and Bristow 2003; Reithel and Billick 2006).  For each ant-

excluded syconium, Tanglefoot was applied onto a collar of card that had been taped 

around the raceme attaching the focal syconium.  Reapplication of Tanglefoot was made 

as and when necessary and daily visits ensured that ants were successfully excluded 

from treated syconia for the duration of the experiment. 

 

5.3.3 Collection and classification 

Syconia from both survey data and ant exclusion trials were harvested just 

before wasp dispersal and their maximum diameters were recorded before placing them 

in mesh topped containers to collect emerging wasps (typically 24-48 hours).  Wasps 

were then killed in 80% ethanol and syconia were dissected to collect any wasps still 

trapped in galls.  All wasps were identified and classified into one of four groups: i) 

pollinators (Ceratosolen fusciceps), ii) gall-formers (P. mayri and P. testacea), iii) 

C B A 
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parasitoids of pollinators (P. agraensis), and iv) parasitoids of gall-formers (A. 

westwoodi and A. sp. 2).  Male Platyneura wasps could not be separated into the above 

groups by eye and were assigned according to the relative abundance of females.  

 

5.3.4 Data analysis 

Data were analysed using R statistical software (version 2.3.1; R Development 

Core Team 2005).  Generalised linear models with binomial error structures were used 

to investigate the effect of Oecophylla smaragdina workers a) under natural conditions 

and b) using ant exclusion trials.  The proportions of emerging wasps within syconia 

were defined as the response variables whilst ant density and ant presence/ absence were 

used as the explanatory variables for natural and ant exclusion trials respectively.  Site 

and fig volume ( 3

3

4
rπ ) were included as covariates in all models to control for 

differences across sites and syconia, respectively.  

 

5.4 Results 

5.4.1 Do ant numbers vary with syconium development? 

Numbers of O.smaragdina workers varied significantly with syconium 

development, displaying a bimodal pattern in ant abundance (Figure 5.2A).  Peak 

numbers of ant workers were observed on days 3-9 and 31-38 (P<0.05 and P<0.0001 

respectively, proportion deviance explained =0.52, D.F. =3292) with densities on days 

31-38 being significantly higher than those on days 3-9 (P<0.001, proportion deviance 

explained =0.52, D.F. =3292).  Syconium diameter was also correlated with ant density, 

with syconia 1.3cm and 3.6cm in diameter associated with peak ant abundance 

(p<0.0001, proportion deviance explained =0.01, D.F. =3305) (Figure 5.2B). 

 

  

Figure 5.2 Variation in ant density with day of observation (A) and syconium size (B). 
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5.4.2 Does O. smaragdina influence the proportion of emerging fig wasps? 

a) Natural conditions (survey data) 

Ant density was negatively correlated with the proportions of emerging parasites 

(P. agraensis and Apocrypta spp.), but did not significantly influence either the 

proportions of gall-formers (P. mayri and P. testacea) or pollinating wasps emerging 

from syconia.  The pollinator sex ratio, however, was positively associated with ant 

density (Table 5.1). 

 

Table 5.1 The effect of ant density on emerging proportions of pollinating and non-pollinating 

fig wasps (P.D.E = proportion deviance explained).  

Wasps  P D.F. P.D.E 

P. agraensis <0.01 52 0.28 

Apocrypta spp.  <0.001 64 0.67 

P. mayri & P. testacea NS (0.57) 60 0.47 

Pollinators NS (0.08) 61 0.62 

Pollinator sex ratio <0.05 59 0.32 

 

 b) Ant exclusion experiments 

The proportions of all emerging NPFWs were significantly higher in ant absent 

(Tanglefoot-treated) than ant present (control) syconia (Figure 5.3).  In contrast, the 

proportion of emerging pollinating wasps was significantly lower among syconia where 

ants had been excluded compared with controls.  The pollinator sex ratio was not 

significantly different between treatments (Table 5.2). 

 

Table 5.2 The effect of ant absence/ presence on emerging proportions of pollinating and non-

pollinating fig wasps (P.D.E =proportion deviance explained). 

Wasps  P D.F. P.D.E 

P. agraensis <0.01 19 0.35 

Apocrypta spp.  <0.05 11 0.75 

P. mayri & P. testacea  <0.001 12 0.92 

Pollinators    <0.0005 16 0.90 

Pollinator sex ratio    NS  (0.69) 14 0.01 

 

 
Figure 5.3 The influence of ant presence (controls) and absence (Tanglefoot) on the proportion 

of emerging pollinators (light grey) and all NPFWs (dark grey) (A), and their impact on 

individual NPFW groups; (B) gall-formers (P.mayri and P. testacea), (C) parasitoids of 

pollinators (P.agraensis) and (D) parasitoids of gall-formers (Apocrypta westwoodi and A. sp.2) 

emerging from syconia.  Error bars represent means ± 1 S.E.  
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5.5 Discussion 

The number of O. smaragdina workers varied significantly with both the day of 

observation and syconium size.  Syconia 1.3cm and 3.6cm in diameter, and observation 

days 3-9 and 31-38 were associated with peak ant abundance.  These diameters fall into 

F. racemosa species averages for receptive and pre-emergence stages (Zhang et al. 2006) 

and the observation days associated with peak ant densities (days 3-9 and 31-38) are 

also likely to correlate with these developmental stages.  Significantly more ants were 

recorded in the late (days 31-38) compared with the early (days 3-9) days of observation 

which is likely to reflect prey availability as hundreds more wasps emerge from syconia 

compared with the (relatively) few foundresses that enter them during receptivity.   

 Recent evidence suggests that ants are able to predict when wasp entry and 

emergence are imminent using the fig volatiles emitted by syconia immediately 

preceding periods of peak wasp activity (Ranganathan and Borges 2009).  Such 

‘eavesdropping’ of fig volatiles by non-intended receivers has been documented among 

Oecophylla smaragdina workers on F. racemosa syconia where, in a series of choice 

tests, workers responded positively to volatiles from receptive and wasp dispersal stage 

syconia, but were indifferent to volatiles from pre-receptive and interfloral stages 

(Ranganathan and Borges 2009).  This implies that ant workers are able to ‘sense’ 

imminent prey availability, a suggestion reiterated by field observations where workers 

were observed in ambush positions (i.e. facing the ostiole) just prior to wasp entry 

(receptive phase) and emergence (dispersal phase).  

In addition to peak ant densities coinciding with periods of peak wasp abundance; 

using a combination of survey data (natural conditions) and ant exclusion experiments, 

results also suggested that O. smaragdina workers significantly influenced the 

proportions of fig wasps emerging from syconia.  Ant-excluded syconia nurtured fewer 

pollinators and more NPFWs than ant patrolled syconia; however, even before syconia 

were harvested, the impact of Tanglefoot application on numbers of ovipositing NPFWs 

was clearly visible in the field.  Ant excluded syconia acted as hotspots for ovipositing 

NPFWs whilst closely situated controls were actively avoided.  The landing behaviour 

of pollinating and non-pollinating fig wasps was also influenced by ant presence, with 

wasps hovering above ant patrolled syconia, apparently hesitating, before landing (see 

also Schatz et al. 2008) whilst no such behaviour was observed surrounding ant absent 

syconia.   

Under natural conditions, ant densities were negatively correlated with the 

proportion of emerging parasitoids, but they did not influence the proportions of 
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emerging pollinators or gall-formers.  Pollinating wasps enter ostioles in a matter of 

seconds and, as they lay their eggs within the relative sanctuary of the inner lumen, the 

impact of externally patrolling ants is unlikely to be high.  Parasites (gall-formers and 

parasitoids), in contrast, oviposit externally and spend significantly more time on the 

surface of syconia.  Parasitoids must also oviposit into already occupied ovules and do 

so later than most herbivorous gall-formers.  Consequently, as ant numbers are elevated 

during syconium receptivity, NPFWs ovipositing post-pollination (predominantly 

parasitoids) may be more prone to predation than those ovipositing before pollinator 

entry (gall-formers).  Moreover, P. agraensis, the parasitoid of the pollinator, has a 

relatively longer ovipositor (ovipositor / femur length) than the other fig wasp species 

associated with F. racemosa (Apocrypta spp. average =8.35±0.10, P. mayri/ P. testacea 

average =13.68±0.16; P. agraensis average =25.13±0.00, C. fusciceps average 

=6.04±1.03, S. Al-Beidh unpublished data).  It is likely to be especially vulnerable to 

predation by patrolling ants as it takes longer to insert, and retract its ovipositor from 

ovules than do the other non-pollinating species equipped with shorter ovipositors 

(personal observation). 

Interestingly, the pollinator sex ratio was positively associated with ant density 

under natural conditions, becoming less female-biased with increasing ant presence.  

This could suggest three things 1) that more foundresses gain entry into more heavily 

ant patrolled syconia (more ovipositing foundresses lay less female-biased sex ratios 

than syconia entered by a single foundress: Frank 1985; Herre 1985, 1987; Kinoshita et 

al. 1998; Pereira and Prado 2006), 2) that the same number of foundresses gain entry to 

heavily ant patrolled syconia but they all lay less female-biased sex ratios, or 3) that 

ovipositing NPFWs on heavily ant patrolled syconia parasitize relatively more female 

pollinator occupied ovules than those ovipositing on syconia with fewer ant patrols.  As 

neither of the first two options seem likely, I turn my attention to the third possibility.  

In monoecious fig species like F. racemosa, style lengths are continuously distributed.  

Wasps laid in short-styled flowers (inner ovules) develop closer to the inner cavity 

whilst those laid in long-styled flowers (outer ovules) develop closer to the outer wall 

(Figure 1.3A).  Inner ovules are therefore less accessible to the ovipositors of externally 

ovipositing NPFWs and are favoured by ovipositing foundresses (Dunn et al. 2008b; 

Chapter 2: this thesis).  As fig wasps lay strongly female biased sex ratios, the loss of a 

son is relatively more ‘costly’ than the loss of a daughter.  Moreover, as males are 

crucially important in mating and releasing females from their syconium, syconia with 

too few males nurture wasps that are condemned to death without dispersal (Chapter 3: 

this thesis).  Foundresses should therefore position their sons in ‘higher value’ inner 
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ovules where they are less likely to be parasitized.  Non-pollinators ovipositing among 

heavily ant patrolled syconia may be under pressure to lay their eggs quickly due to the 

risk of predation.  Consequently, they may save time by ovipositing into ovules closest 

to the fig wall and in so doing, will parasitise female pollinator offspring more often 

than males.  That female pollinators place their sons and daughters in different positions 

within syconia is an idea that has been little studied in the literature (but see Zavodna et 

al. 2005).  Sex-specific positioning of offspring based purely on the basis of style length 

has received even less attention and may provide a fruitful avenue for further research. 

Having said this, ant exclusion trials failed to highlight an effect of ant presence/absence 

on the pollinator sex ratio.  This may be because where controls and Tanglefoot syconia 

were in close proximity to one another, NPFWs avoided syconia with ants altogether in 

favour of those where ants were absent.  Consequently, NPFWs would not have needed 

to lay their eggs as quickly as those ovipositing among heavily ant patrolled syconia.  

Alternatively, it could suggest that the result from the survey data was driven by an 

unmeasured variable rather than the influence of ants per se.  Further studies are needed 

to identify which is the case.   

In conclusion, numbers of O. smaragdina workers followed a bimodal pattern, 

peaking during periods of syconium receptivity and wasp emergence.  Ant presence 

negatively influenced the proportions of emerging NPFW parasitoids and in so doing, 

positively influenced proportions of emerging pollinators.  Oecophylla smaragdina 

workers can therefore be considered indirect mutualists of both F. racemosa trees (by 

increasing their pollen dispersing function), and pollinating fig wasps (by reducing 

parasitism among their larvae).  Given that ants are present on many fig species, further 

work is needed to elucidate whether they can be considered more generally as third-

party mutualists across multiple fig/ wasp systems.    
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                                                                                 Chapter 6 

Fig breeding system influences the trajectory of fig/ wasp 

morphological coevolution 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The differences in the relative allocation of wasps and seeds in monoecious (left) and dioecious 

gall (centre) and seed (right) syconia.  (Adapted from Cook and Rasplus 2003)
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6.1 Abstract 

 Despite fig trees and their pollinating wasps being obligate mutualists that rely 

on one another to reproduce, their reproductive interests are not identical.  I focus on the 

conflict of interest over the development of seeds inherent among monoecious Ficus but 

resolved in dioecious species.  Whilst controlling for phylogeny, I incorporate 87 fig 

species in analyses to observe whether fig trees, their pollinating wasps and their 

associated parasitoids exhibit differences in their morphology that are correlated with 

the fig reproductive system. 

Across all species, fig species with larger syconia had more flowers, bigger galls, 

larger pollinators, parasitoids with longer ovipositors and thicker fig walls than species 

with smaller syconia.  Some aspects of fig and wasp morphology were, however, also 

influenced by fig breeding system (monoecious versus dioecious).  Pollinating wasps of 

larger monoecious syconia had 1) more elongate heads and 2) longer ovipositors than 

those associated with smaller syconia.  These effects were not significant among 

pollinators of dioecious fig species because a) the ostioles of dioecious syconia are 

easier to penetrate and b) because pollinators of dioecious fig species do not need longer 

ovipositors as all styles in male syconia are short.  Moreover, larger dioecious, but not 

monoecious fig species had 1) disproportionately thick fig walls to minimise parasitism 

of pollinator larvae (as parasitoids provide no apparent mutualistic function in dioecious 

species), and 2) parasitoids with disproportionately long ovipositors in order to access 

their hosts in these deeper ovary layers.  I discuss in detail how these results relate to the 

conflict over the relative allocation of fig flowers to wasp and seed production that 

differs with the fig reproductive system.   
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6.2 Introduction 

Natural selection, the process which ‘selects’ against traits that are detrimental to an 

individual’s reproductive success leaving only those that are beneficial (Darwin 1859), 

is responsible for most of the adaptations that we can observe in organisms today.  

Every currently expressed trait represents the outcome of a trade-off between the costs 

and benefits incurred during its development.  Where these costs and benefits have been 

reciprocally influenced by two or more interacting species, the trait is said to have 

coevolved, and the process is termed ‘coevolution’ (Janzen 1980; Futuyma and Slatkin 

1983). 

 The interaction between Heliconius butterflies and their Passiflora host plants is 

a classic example of coevolution (Ehrlich and Raven 1964).  Passiflora species contain 

both toxic alkaloids and cyanogenic glycosides which can deter even the most 

specialised of herbivores (Hay-Roe and Nation 2007).  One group that has, however, 

overcome this defence are the larvae of Heliconius butterflies that are laid on the leaves 

of the passionflower vines.  The toxins in the leaves are sequestered in the bodies of the 

larvae, making them unpalatable to predatory birds and lizards.  To reduce herbivory, a 

number of Passiflora species have hooked hairs called trichomes that impale caterpillars 

(MacDougal 1994), however, some herbivores (Heliconius charithonia and Dione 

moneta) have developed mechanisms to avoid getting speared (Benson et al. 1975; 

MacDougal 1994; Cardoso 2008).  Other, less direct anti-herbivore tactics rely on the 

fact that competition on leaves causes cannibalism among larvae.  Egg mimicry, where 

leaves are dotted with yellow spots, and leaf shrivelling, where leaves mimic larval 

infestation, are two mechanisms employed by some passionflowers to discourage 

oviposition by female heliconids (Hochberg and Van Baalen 1998; Ulmer and 

MacDougal 2004).  Such measures and counter measures between the passionflower 

hosts (to limit oviposition) and their associated Heliconius butterflies (to counteract 

these defences) have escalated into a coevolutionary arms race that has been well 

documented in the literature (Gilbert 1971, 1975; Smiley 1978; Mugrabi-Oliveira and 

Moreira 1996; Engler et al. 2000).  Despite a plethora of academic papers describing 

coevolutionary arms races between interacting species (Anderson and May 1982, 

Minchella 1985; Hochberg et al. 1992; Forbes 1993; Lafferty 1993; Sorci et al. 1997), 

however, far fewer studies have explored mutualistic interactions in such detail. 

Fig trees (Ficus, Moraceae) and their pollinators (Agaonidae, Chalcidoidea) 

represent an extreme type of mutualism where neither partner can reproduce in the 

absence of the other.  The mutualism is obligate as fig trees provide the only egg-laying 
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sites for the pollinating fig wasps, whilst the wasps are the sole dispersers of a fig tree’s 

pollen.  As each fig species is pollinated by species-specific wasps, partners display 

extreme specialisations associated with the interaction.  Coupled with the fact that there 

are over 700 pair-wise interactions between fig trees and their associated wasps (Berg 

1989), the fig/ fig-wasp mutualism provides evolutionary biologists with an excellent 

system for coevolutionary study. 

The fig-wasp lifecycle begins during a brief receptive period early on in the 

development of each inflorescence (syconium) when volatile chemicals are emitted 

from a narrow tunnel (the ostiole) located at its apex.  The chemicals attract pro-

ovigenic female pollinators that are laden with pollen from their natal fig (Grison-Pigé 

et al. 2002; Ware et al. 1993).  The females possess extreme morphological adaptations 

in order to gain entry into inflorescences (Figure 1.2) and once inside, these ‘foundress’ 

wasps pollinate and oviposit among the female flowers for the rest of their brief lives 

(Galil and Eisikowitch 1969).  Pollinated ovules that have not received an egg become 

seeds whilst those containing an egg nurture the developing wasp larvae.  Fully 

developed wasps emerge from their galls a few weeks later and mate.  Female 

pollinators collect pollen from mature male flowers, and male pollinators chew holes 

through the syconium wall to enable the mated females to disperse in search of new 

receptive syconia. 

 Despite this reproductive dependence, fig trees and their pollinators have 

conflicting reproductive interests.  Each pollinator larvae consumes the endosperm of a 

potential seed as it develops (Galil and Eisikowitch 1968a, b).  Consequently, for 

monoecious species, where wasps and seeds develop within the same inflorescence, the 

development of each wasp reduces seed set by one.  As fig trees benefit from the 

development of both seeds and wasps whilst wasps have no short-term interest in seed 

production, the scene is set for a coevolutionary arms race between partners; 

monoecious fig trees must limit wasp entry to allow some seeds to develop, whilst 

pollinators attempt to maximise their lifetime reproductive success by ovipositing in as 

many flowers as possible (Yu et al. 2004). 

Although this conflict is rife among monoecious species, it is absent in dioecious 

Ficus where the development of wasps and seeds is kept separate through the existence 

of male and female trees.  Foundresses entering gall syconia on male trees are able to 

oviposit in most, if not all ovules, whereas those entering seed syconia on female trees 

are exempt from ovipositing in any as style lengths are too long to be accessed by their 

ovipositors (e.g. Weiblen et al. 2001).  Consequently, seed syconia nurture the 

development of seeds only, whilst gall syconia are effectively fig wasp nurseries. 
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 Alongside pollinating fig wasps, the offspring of externally ovipositing non-

pollinating wasps (NPFWs) also consume the contents of potential seeds.  Whilst some 

NPFWs oviposit in empty ovules (gall-formers) costing a fig tree one potential seed for 

every egg laid, other NPFWs (parasitoids and inquilines) oviposit in occupied ovules 

killing the developing larvae.  Each parasitic larva signals a two-fold loss: that of the 

pollinating wasp and the seed that it, in turn, had consumed.  Until recently, parasitoids 

of pollinators were thought to be solely detrimental to fig trees, being responsible for 

their reduced pollen-dispersing and seed-dispersing functions.  Evidence from three 

monoecious fig species, however, suggests that NPFW parasites, in particular, 

parasitoids of pollinators, can be indirect mutualists of monoecious fig trees by 

encouraging pollinator foundresses to oviposit in inner ovules where their offspring are 

at a reduced risk from parasite attack (Dunn et al. 2008b; Chapter 2: this thesis).  This 

increases the likelihood that outer ovules do not receive a pollinator egg, and if 

pollinated, develop as seeds.  In dioecious Ficus, where wasps and seeds develop in 

separate syconia, parasitoids appear to serve no benefit to the trees or their pollinators. 

To date, coevolutionary studies involving fig trees and their associated wasps 

have identified that larger fruited Neotropical monoecious species have more flowers, 

produce more seeds and more wasps, and allow more foundresses entry into their 

ostioles (Herre 1989; Herre and West 1997).  A combination of increased foundress 

number and more virulent nematodes (Herre 1996), however, means that the next 

generation of wasps are less efficient pollen dispersers than species with smaller syconia 

due to their less female-biased sex ratios (Herre 1985, 1989, 1996; Herre et al. 2008).  

This, coupled with the fact that larger monoecious fruit also have a higher probability of 

fungal infection (Michalaides and Morgan 1994) suggests that bigger is not always 

better.  Few studies have done the same level of investigative work among dioecious fig 

species (but see Patel and Hossaert-McKey 2000; Weiblen 2000) although it has been 

shown that pollinators of dioecious fig species have shorter ovipositors than those of 

monoecious species (Wiebes 1994; Weiblen 2004).  Moreover, the rate of parasitism 

and the search efficiencies of parasites are lower in dioecious species given that seed 

figs produce no pollinators but NPFWs do not discriminate (the so-called ‘parasitoid-

sink hypothesis’, Weiblen et al. 2001).  Consequently, whilst there has been some 

investigation into coevolution between fig trees and their wasps both within 

(monoecious: Herre 1989; dioecious: Weiblen 2001) and across fig reproductive 

systems (Wiebes 1979; Jousselin et al. 2003a; Weiblen 2004), few studies have 

specifically compared the morphology of the two fig reproductive systems to investigate 

whether the aforementioned conflict (or lack of) over the relative production of wasps 
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and seeds may directly impose selection pressures on fig and wasp morphology (but see 

Harrison and Yamamura 2003). 

 

6.2.1 Predictions of morphological coevolution 

Syconia produced by different fig species can display considerable size variation 

from some the size of peas to others as large as peaches (Cook and Rasplus 2003; Herre 

et al. 2008, Figure 6.1).  Across both monoecious and dioecious Ficus, larger syconia 

are likely to have more flowers than smaller ones (Herre and West 1997).  After 

receiving an egg, these flowers are likely to develop into larger galled ovules which 

nurture bigger wasps (Herre 1989).  Despite these similarities, the presence or absence 

of the wasp/ seed trade-off in monoecious and dioecious species respectively may mean 

that different selective pressures act on fig trees and their pollinators as a consequence 

of the fig reproductive system.  In monoecious Ficus, style lengths are continuously 

distributed (Figure 1.3A) and despite an oviposition site preference for inner flowers 

over outer ones that develop closer to the fig wall (Dunn et al. 2008b), later entering 

females may have to lay their eggs into less favoured (outer) ovules (Yu et al. 2004).  

Once oviposition sites become limiting, females with longer ovipositors may be at an 

advantage over those with shorter ovipositors as an ability to access the remaining 

ovules, despite the increased risk of larval parasitism (Dunn et al. 2008b), should be 

preferable to an inability to oviposit in any of the remaining ovules.  The combination of 

increasing foundress number (Herre 1989; Cook (unpublished)) and wasp fecundity 

(Nefdt and Compton 1996) associated with larger syconia and bigger pollinators 

respectively, is likely to mean that competition for ovules increases in larger fig species 

(J. M. Cook pers. comm.), despite the increased flower number.  This would suggest 

that longer (and perhaps disproportionately long) ovipositors among pollinators would 

be advantageous.  These longer ovipositors would mean that pollinator larvae in larger 

syconia are likely to be distributed in a wider range of ovary layers.  Parasitoids of these 

pollinator larvae would, in turn, be selected to have longer ovipositors to access their 

hosts in these deeper ovary layers.  As parasitoids often only lay a few eggs in multiple 

syconia, rather than all their eggs at once (Compton et al. 2009), competition for 

oviposition sites is expected to be weaker among parasitoids than among their internally 

ovipositing hosts.  Consequently, selection for disproportionately long ovipositors is 

likely to be relatively weak.  

 In contrast, the style lengths among dioecious gall syconia are uniformly short 

(Figure 1.3 B, C).  Although larger syconia may have longer styles, they are likely to 

still be accessible to pollinators without strong selection on increased ovipositor length.  
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As all pollinators develop in a single ovary layer at a roughly uniform distance from the 

fig wall, similarly weak selection on increased ovipositor length in parasites is expected.   

Based on this logic, I can make predictions based on what I expect all fig species to 

share in common, and those that may be different as a consequence of the fig 

reproductive system: 

1) Similarities: across both monoecious and dioecious Ficus, I expect species with 

large syconia to have i) more flowers, ii) larger galls and iii) larger pollinators than fig 

species with smaller syconia. 

2) Differences: In monoecious, but not dioecious Ficus, I expect larger syconia to 

have i) pollinating wasps with longer ovipositors, and ii) parasitoids equipped with 

longer ovipositors to access their hosts. 

 

6.3 Materials and methods 

6.3.1 Data collection 

I collected data from 87 Ficus species across six subgenera either by dissections from 

preserved specimens (17 monoecious species) or from the published literature (42 

monoecious, 28 dioecious species) (Table 6.1). All syconium data refer to ripe (D-stage) 

syconia prior to wasp emergence.  For dioecious species, all values refer to gall syconia.  

For specimens dissected by myself, species were sometimes home to more than one 

species of agaonid pollinator (F. rubiginosa, F. pleurocarpa, F. crassipes and F. 

obliqua).  In such instances, as the average size of the pollinators entering syconia was 

the variable of interest, pollinator morphology refers to an average across all pollinator 

species associated with a particular fig species.  Multiple pollinating species have also 

been recorded from other species present in my data set; however, morphological data 

for all pollinating species was not always available.  Parasitoids (of pollinators) are 

represented by two closely related genera, Sycoryctes and Sycoscapter (Tzeng et al. 

2008), which are the most widespread of all fig-wasp parasitoids on Ficus (Bouček 

1988, 1993; Lopez-Vaamonde et al. 2001).  Their impact, although originally 

considered in a purely negative light, has recently gained importance as Dunn et al. 

(2008b) identified that parasitoids of pollinators (including Sycoscapter spp.) act as 

indirect mutualists of the system by encouraging ovipositing foundresses to deposit their 

eggs in ovules furthest from the fig wall where the risk of larval parasitism is lowest.  

By including parasitoids in the analyses, we can determine whether, like fig trees and 

their pollinators, they too display coevolved morphological characters associated with 

their hosts, making their impact on the system more general than was at first considered.  
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Table 6.1  Ficus species, their taxonomic placing based on morphology following Berg and 

Corner (2005), reproductive system (dioecious (D)/ monoecious (M)), source of data (literature 

(L)/ dissected specimen (S)), number of syconia dissected, and literature source for fig and/ or 

wasp morphology (Abdurahiman and Joseph 1975 (10); Balakrishnan Nair et al. 1981(4); 

Bronstein 1992 (19); Herre and West 1997 (11); Herre 1989 (16); Hill 1969 (21); Kathuria et al. 

1995 (7); Kieffer 1912 (17); Kjellberg et al. 2001 (appendix) (5); Nair et al. 1981 (15); van 

Noort and Compton 1996 (1); Waterston 1921 (14); Weiblen 2004 (3);Wiebes 1963(8), 1964 (2), 

1965 (20), 1979 (13), 1980 (12), 1982 (9), 1992 (18), 1994 (6). 

Ficus Subgenus Section 
Reproductive 

system Source 
Syconia 

dissected Literature 

abutilifolia Urostigma Galoglychia M L 1  1,5 

adenosperma Sycomorus Adenosperma D L   2,3 

albipila Pharmacosycea Oreosycea M L   3 

altissima Urostigma Urostigma M L  3  4, 5 

asperifolia Sycidium Sycidium D L   5 

aurata Ficus Eriosycea D L  4  5 

auriculata Sycomorus Sycomorus D L   3,6 

benghalensis Urostigma Urostigma M L   7 

benjamina Urostigma Urostigma M S 10   

bernaysii Sycomorus Sycocarpus D L   3,8 

binendikii Urostigma Urostigma M L   5,9 

botryocarpa Sycomorus Sycocarpus D L   3,8 

burkei Urostigma Galoglychia M S 29   

burt davyii Urostigma Galoglychia M S 14   

callosa Pharmacosycea Oreosycea M L    2  5,10 

citrifolia Urostigma America  M L  55  5,11 

conocephalifolia Sycidium Sycidium D L   2,3 

conosociata Urostigma Urostigma M L   5,9 

copiosa Sycidium Sycidium D L   3,12 

crassipes Urostigma Malvanthera M S 4 5  

craterostoma Urostigma Galoglychia M L  1 1,5 

deltoidea Ficus Ficus D L   3  5 

destruens Urostigma Malvanthera M S 10   

drupacea Urostigma Urostigma M L   7 

edelfeltii Pharmacosycea Oreosycea M L   3,13 

erecta Ficus Ficus D L   5 

fistulosa Sycomorus Sycocarpus D L   5,14 

glumosa Urostigma Galoglychia M L 1  1,5 

grossularioides Ficus Ficus D L 3  3,6 

hesperidiiformis Urostigma Malvanthera M S 2   

hirta Ficus Eriosycea D L   5,15 

hispidoides Sycomorus Sycocarpus D L   3,8 

ingens Urostigma Urostigma M L  1 5,12 

insipida Pharmacosycea Pharmacosycea M L   3 

itoana Sycomorus Papuasyce D L   3,8 

lateriflora Sycidium Sycidium D L  5  5 

liliputania Urostigma Malvanthera M S 2   

lutea Urostigma Galoglychia M L 1  1,5 
macrophylla 
maxima 

Urostigma 
Pharmacosycea 

Malvanthera 
Pharmacosycea 

M 
M 

S 
L 

7 
4  

 
5 

microcarpa Urostigma Urostigma M S 7   

microdictya Sycomorus Papuasyce M L   3 

mollior Sycomorus Adenosperma D L 1  5,12 

natalensis leprieurii Urostigma Galoglychia M L 1  1,5 

nodosa Sycomorus Sycomorus D L   3,12 

nymphaefolia Urostigma Americana  M L 65  5,11,16 

obliqua Urostigma Malvanthera M S 6   

obtusifolia Urostigma Americana  M L 34  5,11,16 

odoardi Synoecia Rhizocladus D L   3 

ottonifolia Urostigma Galoglychia M L   7 

ovata Urostigma Galoglychia M L   17 

paraensis Urostigma Americana  M L  22 5,16 

parietalis Sycidium Sycidium D L  6 5 

pellucidopunctata Urostigma Urostigma M L   3,18 

perforata Urostigma Americana  M L   16 

pertusa Urostigma Americana  M L   11,16,19 

platypoda Urostigma Malvanthera M S 2   

pleurocarpa Urostigma Malvanthera M S 9   

prasinicarpa Urostigma Urostigma M L   3 

prolixa Urostigma Urostigma M L  4 5,6 

pumila Synoecia Rhizocladus D L  5 

racemosa Sycomorus Sycomorus M L  33  3,5 

reflexa Urostigma Galoglychia M L  1 1,5 
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Ficus Subgenus Section 
Reproductive 

system Source 
Syconia 

dissected Literature 

rubiginosa Urostigma Malvanthera M S 12 
  
 

rumphii Urostigma Urostigma M L   5 

sagittifolia Urostigma Galoglychia M L  1 1,5 

septic Sycomorus Sycocarpus D L 15  3,5,6 

stuhlmannii Urostigma Galoglychia M L  1 1,5 

subgelderi Urostigma Urostigma M L   5 

sundaica Urostigma Urostigma M L   5,20 

superb Urostigma Urostigma M L  1 3 

sur Sycomorus Sycomorus M L  2 3,5 

sycomorus Sycomorus Sycomorus M L  1 5,7 

tesselata Urostigma Galoglychia M L  1 1,5 

tinctoria Sycidium Paleomorphe D L   3,21 

trachypison Sycidium Sycidium D L   3 

trichopoda Urostigma Galoglychia M L  1  1,5 

triradiata Urostigma Malvanthera M S 1 5  

uncinata Sycomorus Sycocarpus D L  1  5,8 

variegata Sycomorus Sycomorus D L   3 

virens Urostigma Urostigma M S 7   

virgata Sycidium Paleomorphe D L 30  3,5,21 

wassa Sycidium Sycidium D L   3,8 

watkinsiana Urostigma Malvanthera M S 17   

xylophylla Urostigma Urostigma M L  3  5,18 

xylosycia Urostigma Malvanthera M S 1   

yoponensis Pharmacosycea Pharmacosycea M L   3,19 

 

6.3.2 Dissecting preserved specimens 

I dissected 140 syconia from 17 Ficus species (Table 6.1) that had been collected by 

myself or JMC on previous field trips, and had been stored in 80% ethanol.  For all 

species, syconia were sliced into eighths, and ovules were selected randomly using a 

‘one in four’ approach.  This involved removing every fourth ovule for each segment 

using forceps and transferring selected ovules to a watch glass of 80% ethanol for later 

analyses.  For F. burkei, 14 syconia were dissected in this way but due to low numbers 

of parasitoids, all ovules (rather than just one in four) for an additional 18 syconia 

supplemented the data.  Where multiple syconia from one fig species were available 

(Table 6.3), measurements were combined across syconia to create a mean value for 

each variable and for each fig species.  Alongside the variables already mentioned in 

section 6.2.1, the effects of other morphological characters were also investigated.  In 

total, I collected data on seven variables:  

(a) Syconium volume (mm): approximated to that of a sphere ( 3

3

4
rπ ), unless the volume 

of a cone ( lr
2

3

1
π ) provided a better approximation (F. crassipes and F. pleurocarpa); 

(b) Flower number: total number of female flowers per syconium; (c) Gall volume (mm): 

approximated to the volume of a sphere; (d) Pollinator body length (mm): ventral 

distance from the clypeal margin to the point at which the ovipositor sheath joins the 

abdomen; (e) Ovipositor length (mm): total (first and second valvulae) and relative 

ovipositor length (total length/ thorax length) for pollinating wasps and their parasitoids; 
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(f) Syconium wall thickness (mm): total and relative (total thickness/ syconium radius) 

thickness of the syconium wall; (g) Pollinator head shape: (
lengthhead

widthhead ), where head 

width was measured as the maximum distance across the eyes, and head length 

represented the distance from the back of the head to the clypeus.  A value of one 

represents a square-shaped head, whilst measures of less than one represent heads that 

are increasingly elongate. 

 All traits with the exception of fig size (diameter) and fig wall thickness were 

recorded to the nearest 0.024 mm using an eyepiece graticule attached to a binocular 

microscope.  Fig size and wall thickness were measured to the nearest 0.05mm using 

digital callipers.  Average wall thickness was calculated from 24 measures of the 

syconium wall taken at three points (at each end and in the middle) for each eighth. 

 

6.3.3 Creating a phylogenetic tree using molecular data 

Phylogenetic non-independence is the term used to describe the situation where closely 

related species are more likely to show morphological similarities than those more 

distantly related (Freckleton 2009).  Consequently, analyses involving morphology 

across multiple species can be confounded when phylogeny is not considered.  

Moreover, it is best that the phylogeny is inferred from data that are independent of the 

variables under consideration.  I therefore used DNA sequences of the internal 

transcribed spacer (ITS) from GenBank to create a molecular phylogeny for the 87 fig 

species.  Three fig species (F. maxima, F. insipida and F. yoponensis) from the section 

Pharmocosycea were chosen as outgroups following overwhelming evidence for this as 

the basal group of Ficus (Wieblen 2000; Jousselin et al. 2003a).  I pre-aligned the 

sequences in Clustal X2 (version 2.0.11) (gap opening parameter =10, gap extension =5, 

delay divergent sequences = 40%) and manually adjusted the resulting alignment in 

Bioedit (version 7.0.9.0).  I used MrBayes (version 3.1.2) to create phylogenies using 

Bayesian analysis, running the chains for 10
6
 generations and sampling every 100 

generations.  The first 2,500 trees were discarded as ‘burnin’ and a consensus tree 

(Figure 6.3) of the remaining 7,500 trees was created and imported into R (version 2.9.1) 

(R Development Core Team 2005) for analyses with morphological data. 
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Figure 6.1 The variation in syconium size across nine fig species: (A) Ficus deltoidea, (B) F. 

benghalensis, (C) F. racemosa, (D) F.rubiginosa, (E) F. macrophylla, (F) F. pumila, (G) F. 

lutea, (H) F. auriculata and (I) F. microcarpa.  Scale bar = 5mm.  Adapted from Toptropicals 

(2009). 
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6.3.4 Morphological data analysis  

I log transformed all morphological variables except those involving ratios (relative 

ovipositor lengths, pollinator head ratio and relative fig wall thickness) which remained 

untransformed.  I then used phylogenetic generalised linear models (also known as 

phylogenetic GLS, Grafen 1989, 1992; Gage and Freckelton 2003) to analyse the 

phylogenetic and morphological data.  Once a tree including those fig species associated 

with the variable of interest had been constructed, a function (pglmEstLambda) used 

maximum likelihood to estimate λ, a measure of how strongly correlations between 

traits are influenced by phylogeny (Pagel 1999; Freckleton et al. 2002).  A value of λ =0 

represents a standard linear model with no shared phylogenetic history, and λ =1 

indicates data structured according to a Brownian model of trait evolution (i.e. where 

the variance in the trait values increase over time).  I then specified the morphological 

variable of interest (e.g. flower number/ fig wall thickness etc.) as the response variable, 

and fig volume as the continuous explanatory variable. 

 

6.4  Results 

Across all species (monoecious and dioecious), larger syconia had significantly more 

(female) flowers, larger galls, larger pollinating wasps, externally ovipositing 

parasitoids with longer ovipositors and thicker syconial walls compared to species with 

smaller syconia (Table 6.2).  Larger monoecious (but not dioecious) syconia had 

pollinating wasps with longer ovipositors and more elongate heads than those from 

smaller syconia.  Pollinators from neither monoecious nor dioecious fig species had 

ovipositors that were longer than expected for their size alone.  In contrast, dioecious fig 

species had parasitoids with disproportionately long ovipositors and disproportionately 

thick fig walls, something not shared with monoecious fig species (Table 6.2).  
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Table 6.2 Results of morphological data analysis using phylogenetic generalised linear models 

for monoecious (M) and dioecious (D) fig species.  

Effect N P F R
2
 λ 

Flower number (M) 43 <0.0001 107.22 0.72 6.61E-05 
(D) 16 <0.0001 17.75 0.53 6.61E-05 

Gall size (M) 21 <0.0001 60.22 0.75 0.40 
(D) 18 <0.0001 17.24 0.49 6.61E-05 

Pollinator size (M)  32 <0.0001 32.40 0.50 0.84 
(D) 21 <0.01 8.34 0.31 6.61E-05 

Pollinator OL (M) 33 <0.0001 26.10 0.44 0.07 

(D) 16 NS (0.19) 1.92 0.06 6.61E-05 

Relative pollinator OL (M) 11 NS(0.40) 0.77 -0.02 6.61E-05 
(D) 18 NS (0.43) 0.66 -0.02 1.40E-02 

Pollinator head shape (M) 29 <0.005 13.17 0.30 0.37 
(D) 21 NS (0.06) 4.12  0.14 6.61E-05 

Parasitoid OL (M) 12 <0.005 14.49 0.55 6.61E-05 
(D) 12 <0.05 5.47 0.29 6.61E-05 

Relative parasitoid OL(M) 6 NS (0.10) 4.41 0.40 6.61E-05 
(D) 14 <0.05 5.49 0.26 6.61E-05 

Fig wall thickness (M) 24 <0.0001 87.49 0.79 6.61E-05 
(D) 16 <0.0005 28.12 0.67 9.90E-01 

Relative fig wall thickness (M) 24 NS (0.06) 4.21  0.12  6.61E-05  
(D) 17 <0.0001 94.53 0.85 6.61E-05 

 

 

                  

Figure 6.2 Relationships between (log) fig volume and (A) pollinator ovipositor length, (B) 

pollinator head shape (C) relative parasitoid (Sycoscapter/ Sycoryctes spp.) ovipositor length 

and (D) relative fig wall thickness in monoecious (black) and dioecious (red) fig species. The 

relationships are not significant in (A) and (B) for dioecious species, nor in (C) and (D) for 

monoecious species.    
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Figure 6.3 The consensus tree of 7500 ITS trees for 87 monoecious (blue) and dioecious (red) 

fig species. 
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FICUS 

Reproductive 
system 

Fig 
volume 
(mm3) 

Female 
flowers 

Fig wall 
thickness 

(mm) 

 
Relative 

wall 
thickness 

Gall 
volume 
(mm3) 

Poll. BL 
(mm) 

Poll. 
head 
shape 

Poll. 
OL 

(mm) 
Poll. 

OL/BL 

Syco. 
OL 

(mm) 

Syco 
BL 

(mm) 

Syco. 
OL/BL 
(mm) 

deltoidea D 179.59 94           

trachypison D 197.89  0.4 0.10 0.46   0.29     

virgata D 314.79 116 1.5 0.21 0.16 0.85 1.20 0.17 0.20 2.15 1.30 1.65 

adenosperma D 562.21  1.4   1.20 1.00 0.24 0.20    

wassa D 698.81  1.2 0.19 0.39 1.50 1.09 0.29 0.19    

tinctoria gibbosa D 904.78 100 1.2 0.20 0.28 1.25 1.20 0.14 0.11 2.10 1.22 1.72 

aurata D 904.78 968    1.60 1.11    1.63  

grossularioides D 1022.65 826 1.2 0.19 0.78 1.30 1.00 0.12 0.09    

parietalis D 1150.35 153        3.77 1.80 2.09 

bernaysii D 1288.25   0.18 0.61 1.40  0.19 0.14 8.23 2.00 4.12 

asperifolia D 1767.15 1000           

hirta D 2144.66 400    1.30 1.17      

mollior D 2284.31 427   0.34 1.40 1.00      

uncinata D 2572.44 445    2.70 1.06   5.49   

erecta D 2806.16 190    1.40 1.25   7.16   

lateriflora D 2806.16 1170           

fistulosa D 3053.63 800    1.45 1.17      

conocephalifolia D 5964.12  3.9 0.24 1.60 2.70 1.00 0.21 0.08 10.63   

nodosa D 11383.56  4.5 0.26 0.88 1.60 1.10 0.58 0.36    

copiosa D 12862.75  5.4 0.27 0.86 1.80 1.10 0.56 0.31    

septica D 14080.69 248 2.9 0.25 0.57 2.00 0.83 0.17 0.09 7.43 2.47 3.01 

variegata D 14137.17 1800 4.0 0.27 0.51 1.40 1.17 0.34 0.24    

itoana D 21092.16  8.5 0.33 1.38 2.15 1.00 0.46 0.21    

hispidoides D 21594.48  6.8 0.27 1.10 2.30 1.00 0.25 0.11    

botryocarpa D 22449.3  3.7 0.25 0.46 1.50 1.05 0.26 0.17    

odoardi D 23031.53  4.7 0.27 0.88   0.24     

auriculata D 65406.25  7.0 0.28 0.90 2.00 0.91 0.37 0.19 10.93   

pumila D 127831.73 5500    2.50 0.63      

prasinicarpa M 65.45  0.1 0.04 0.18   0.56     

binendikii M 179.59     1.20 1.00      

prolixa M 268.08 217    1.40       

reflexa M 268.08 182           

liliputania M 294.01  0.9 0.22  1.57 0.76 0.94 0.6    

microcarpa M 309.4 236 0.9 0.21 0.08 1.21 1.20 0.97 0.8 7.23   

perforata M 394.57 200           

burt davyii M 468 190 1.8 0.38 0.24 0.96 1.09 0.96 1.00    

obliqua M 475.04 343 1.1 0.22 0.35 1.30 0.82 0.86 0.66    

craterostoma M 523.6 408        5.91   

benjamina M 558.88 467 0.86 0.17 0.30 1.07 1.13 0.92 0.86    

pertusa M 689.33 300      1.03     

superba M 696.91 513 1.4 0.25 0.45 1.00 0.71 0.74 0.74    

conosociata M 696.91     1.80 1.17      

 
              

Table 6.3 Morphological fig and wasp data for 87 fig species (D =dioecious, M=monoecious, OL= ovipositor length, BL=body length, Poll. = pollinator, 

Syco. =Sycoscapter/ Sycoryctes wasps).   
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Ficus 
 

Reproductive 
system 

Fig 
volume 
(mm3) 

Female 
flowers 

Fig wall 
thickness 

Relative 
wall 

thickness 

Gall 
volume 
(mm3) 

Pollinator 
BL (mm) 

Poll. 
head 
shape 

Poll. 
OL 

(mm) 
Poll. 

OL/BL 

Syco. 
OL 

(mm) 

Syco. 
BL 

(mm) 

 Syco. 
OL/BL 
(mm) 

virens M 944.41 345 2.16 0.36 0.30 1.25 1.00 0.68 0.54 9.13 2.23 4.09 

benghalensis M 1022.65 400    1.80 1.00 1.37 0.76    

albipila M 1022.65       0.67     

glumosa M 1022.65 252        1.93 1.25 1.54 

subgelderi M 1150.35 311           

altissima M 1288.25 816    1.90 1.00   3.26   

destruens M 1327.5 338 2.01 0.30 0.46 1.79 0.93 0.87 0.49    

burkei M 1416.4 172 2.07 0.30 0.52 1.30 0.93 1.19 0.92    

xylosycia M 1499.21    0.33 2.85 0.56 1.41 0.49    

rumphii M 1515.11 400        3.41 1.60 2.13 

pellucidopunctata M 1646.31  1.30 0.19 0.82 1.20 1.25 1.12 0.93    

ingens M 1767.15 384    1.40 1.25      

trichopoda M 1767.15 722           

citrifolia M 1875.31 325        3.24 2.61 1.24 

microdictya M 2144.66  3.10 0.26 1.12   0.89     

abutilifolia M 2144.66 869      1.71     

rubiginosa M 2305.87 541 1.29 0.16 0.66 1.84 0.62 1.20 0.65    

yoponensis M 2352.07 359      1.33     

sundaica M 2438.64     1.40       

paraensis M 2711.05 413           

macrophylla M 2750.84 434 1.64 0.19 0.97 2.91 0.42 1.69 0.58 5.74   

edelfeltii M 2806.16  4.10 0.26 1.02 1.60 1.11 1.20 0.75    

lutea M 2806.16 626      1.57     

natalensis leprieurii M 2806.16 179           

stuhlmannii M 3315.23 257           

maxima M 3591.36 445    2.44 0.8      

callosa M 4188.79 510    1.90       

drupacea M 4188.79     1.60 1.00 0.55 0.34    

platypoda M 5874.55  1.90 0.17  1.99 0.61 1.39 0.70 4.17   

tesselata M 5964.12 806        3.54   

triradiata M 7938.24 225 3.30 0.27  1.78 0.83 1.39 0.78 2.73   

ottonifolia M 8181.23       1.67     

sagittifolia M 8181.23 740        5.08   

nymphaefolia M 11742.1 675        6.04 2.77 2.18 

obtusifolia M 12507.66 976           

sur M 14137.17 1938 3.90 0.26 2.27   1.17     

insipida M 14137.17 1230 7.50 0.28 1.35 2.44 0.72 1.14     

crassipes M 17201.04 678 3.85 0.21  2.95 0.59 1.70 0.58 3.33 1.23 2.71 

watkinsiana M 20023.18 1048 7.42 0.45 1.23 2.62 0.57 2.01 0.77    

pleurocarpa M 25180.73 1295 5.19 0.25 1.93 3.25 0.42 2.05 0.63    

racemosa M 25881.94 1300 3.90 0.21 1.20   0.99     

xylophylla M 27093.1 1738    2.1 1.10   5.26 2.25 2.34 

ovata M 27611.65     2.00       

sycomorus M 65449.85 2623      1.95     

hesperidiiformis M 94975.63  7.20 0.26 4.06 3.92 0.43 5.60 1.43    



                                                     6. Morphological coevolution between fig trees and their wasps 

 

 92 

6.5 Discussion 

The principal findings of this study were that larger syconia of both monoecious 

and dioecious Ficus had significantly more (female) flowers, larger galls, thicker 

syconial walls, larger pollinating wasps and externally ovipositing parasitoids with 

longer ovipositors.  Bigger galls can support the development of larger pollinating 

wasps and given that across monoecious fig species, pollinator size and fecundity are 

strongly correlated (Nefdt and Compton 1996), more flowers are necessary to increase 

the likelihood that at least some seeds are set.  In dioecious species, despite the absence 

of a trade-off in the development of seeds and wasps, increasing flower number is also 

advantageous.  Gall syconia with more flowers can nurture more pollinators which, in 

turn, equates to increased pollen dispersal ability for the fig tree.  These advantages may 

leave us wondering why any fig species have small syconia, however, large syconium 

size has its own drawbacks such as the increased proportion of non-pollen dispersing 

males associated with higher foundress numbers (Harrison and Yamamura 2003), and 

an increased necessity to transpire to prevent wasps from fatally overheating (Patiño et 

al. 1994). 

Although there were several common trends in fig and wasp morphology across 

monoecious and dioecious Ficus, there were also interesting differences between the 

two fig reproductive systems.  Across monoecious species, pollinating wasps associated 

with larger syconia had longer ovipositors than species with smaller syconia.  This was 

not true among dioecious fig species.  Moreover, pollinators of dioecious fig species 

generally have shorter ovipositors than those of monoecious species (Ramirez 1980; 

Weiblen 2004).  As monoecious fig trees must limit wasp oviposition to promote seed 

set, style lengths are likely to scale positively with seed (and therefore syconium) size, 

such that foundresses associated with larger syconia are likely to need longer 

ovipositors to be able to successfully oviposit into ovules.  In dioecious species, a 

separation in the development of wasps and seeds to gall and seed figs respectively has 

resulted in gall figs having short styles that can be easily accessed by foundresses.  

Although bigger gall figs are likely to have more foundresses that in turn, are likely to 

suffer increased competition for oviposition sites, having an ovipositor longer than these 

styles is unlikely to provide any additional benefit (Weiblen 2004).  Selection for longer 

ovipositor lengths among pollinators is therefore unlikely to be strong.  In contrast, 

strong positive selection on ovipositor length would be expected for females that enter 

seed syconia where the vast majority of styles are too long to be accessed by pollinating 

females.  Having said this, given that no male flowers (and therefore no pollen) develop 
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in seed figs, any pollinator with an ovipositor long enough to reach even a few ovules 

would have offspring that would be unable to reproduce themselves (having no pollen 

to collect on emergence from their natal syconium and limiting the chances that their 

larvae develop successfully (Jousselin et al. 2003b)).  Interestingly, neither reproductive 

system was associated with pollinators with ovipositors longer than expected for their 

size alone suggesting that a longer ovipositor is likely to be associated with a significant 

energetic cost (Ganeshaiah et al. 1995; Quicke et al. 1999; Yu et al. 2004). 

Parasitoids of larger dioecious, but not monoecious fig species had 

disproportionately long ovipositors.  Although this result was based on relatively few 

species (Table 6.2), the trend is likely to be a real one given that larger dioecious, but 

not monoecious syconia, had walls that were disproportionately thick.  Thicker syconial 

walls help fig trees reduce the number of pollinating wasps being parasitised.  In 

monoecious Ficus, having syconial walls too thick is, however, also suboptimal.  

Recent evidence from monoecious fig species (Dunn et al. 2008b) indicates that first 

entering foundresses select short-styled ovules first, whilst later entering foundresses are 

forced to oviposit in increasingly longer-styled ovules, closer to the fig wall.  If, for a 

given monoecious fig species, syconial walls become thicker over time (and assuming 

that parasitoids do not develop longer ovipositors quickly enough to respond), 

parasitoids would be able to reach fewer ovules.  Consequently, foundresses that had no 

preference for any flowers would lay more offspring than those that wasted time 

searching for short-styled flowers.  Over time, the preference to oviposit into inner 

ovules would erode, decreasing seed set accordingly.  At the other extreme, syconial 

walls too thin would allow externally ovipositing parasites access to more ovules, 

precluding pollinator wasp development in these flowers.  This would benefit neither fig 

tree (reduced pollen dispersal) nor pollinator wasp (parasitism). Selection should 

therefore favour monoecious syconia that allow parasitoids access to some, but not all 

ovules, encouraging foundresses to prefer some flowers over others and allowing seeds 

to develop in those least favoured flowers.  

As parasitoids provide no apparent mutualistic benefit to dioecious fig trees, a thicker 

syconial wall presents no such disadvantage and will only serve to further reduce the 

incidence of parasitism among pollinator larvae.  The disproportionately thick syconial 

wall coupled with the suggested costs of having an ever longer ovipositor (Ganeshaiah 

et al. 1995; Quicke et al. 1999; Yu et al. 2004; but see Sivinski et al. 2001) and the fact 

that parasitoids appear not to differentiate between gall and seed figs, (despite their 

hosts only being present within male figs, Weiblen et al. 2000) may help explain why 
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rates of parasitism are significantly lower in dioecious compared to monoecious fig 

species (Weiblen et al. 2001). 

Fig wall thickness has a strong impact not only on parasite ovipositor length, but 

also on pollinator head shape.  Pollinators associated with larger monoecious species 

had more elongate heads than those from smaller syconia.  The same correlation was 

observed among dioecious species although the latter result was (marginally) non-

significant.  Thicker fig walls equate to a longer ostiolar passage, and longer heads 

complete with longer mandibles and more teeth may prove beneficial in ratcheting 

individuals into the syconial cavity.  Previous evidence (van Noort and Compton 1996) 

has identified a strong association between internally ovipositing wasp head shape and 

syconium size in monoecious figs; pollinating and non-pollinating fig wasps from two 

independent lineages (Agaoninae and Sycoecinae respectively) have more square-

shaped heads when associated with smaller fruited fig species, whilst those associated 

with larger syconia are equipped with heads that are more elongate (van Noort and 

Compton 1996).  Dioecious fig trees do not need to limit pollinator wasp entry to the 

extent that monoecious species do given the lack of a trade-off between wasp and seed 

development.  Moreover, re-emergence of foundresses after pollination is much more 

likely in dioecious than monoecious species (Moore et al. 2003; Hu et al., in press).  

Taken together, these results suggest that the ostioles of dioecious fig species may be 

more ‘porous’ than those of monoecious syconia. 

 Other factors are also likely to influence fig wall thickness.  Larger syconia, 

unlike smaller ones, use evapotranspiration to ensure that the fig interior is sufficiently 

cool to prevent pollinating wasps from overheating within their galls (Patiño et al. 1994).  

Consequently, there must be an upper limit to syconium wall thickness to ensure that 

temperatures within syconia remain viable for the developing wasps.  Fig trees must 

also ‘consider’ the impact of wall thickness on both seed-dispersing agents and non-

hymenopteran seed predators.  Thicker syconial walls, although perhaps less favoured 

by seed-dispersing frugivores (McKey and Kaufmann 1989; West et al.1996), may help 

dissuade burrowing staphylinid beetles (Nadel et al. 1992), moths and weevils 

(Bronstein 1988b) from attacking ripening syconia. 

 Despite different conflicts of interest between wasps and either monoecious or 

dioecious Ficus, the results of this study suggest that some patterns of morphological 

coevolution are common to both reproductive systems.  The fig reproductive system, 

however, does affect selection on some aspects of pollinator and parasitoid morphology.  

Stronger selective pressures on the head shape and ovipositor length of pollinators 

associated with monoecious fig species reflect the conflict of interest in the relative 
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production of wasps and seeds that is absent among dioecious species.  Nevertheless, 

disproportionately thickened fig walls in dioecious fig species select for extra-long 

ovipositors of parasitoids that attack wasp larvae from the other side of the fig wall. 

 Although the results of comparative analyses cannot dissociate cause and 

consequence to ‘prove’ reciprocal adaptation, they are nevertheless useful as additional 

sources of information, especially if the results are replicated in other data sets.  

Comparative studies that consider the coevolutionary selective pressures acting in 

monoecious and dioecious fig species are lacking in the literature, and more work is 

needed to expand our knowledge in this area.  In particular, analyses involving multiple 

morphological measures can help elucidate the factors that are under strong selection 

between mutualistic partners, and those in turn, may help us understand how stability in 

the system is being maintained. 
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7.1 Introduction 

 At first glance, mutualisms can appear as altruistic and therefore costly 

interactions between unrelated partners.  They are, however, perhaps better 

conceptualised as examples of reciprocal parasitism and mutual exploitation (Nowak et 

al. 1994; Leight and Rowell 1995; Doebeli and Knowlton 1998).  Given the selfishness 

of natural selection, a cheating mutualistic partner that receives the benefit of the 

interaction, but provides little service in return, is at an advantage over one that 

reciprocates.  Mutualistic interactions are therefore rife with conflict as each partner 

attempts to exploit the other (e.g. Poulin and Grutter 1996; Anstett et al. 1997; Herre 

and West 1997; Herre 1999; Johnson et al. 1997; Foster and Delay 1998; Irwin and 

Brody 1998; Addicott and Bao 1999; Currie et al. 1999; Jaeger et al. 2000; Mueller 

2002; Dufay and Anstett 2003; Dunn et al. 2008b). 

 The fig/ fig wasp interaction represents one of only a handful of obligate 

pollination mutualisms (yucca/ yucca-moth, senita/ senita-moth, 

globeflower/globeflower-flies, Glochidion tree/ Epicephala moth, New Caledonian 

Phyllanthus/ Epicephala moths).  In each case, partners are reliant on one another in 

order to reproduce.  Among monoecious fig trees, fig wasp larvae develop at the cost of 

potential seeds so that in the short-term, the presence of a seed represents only a missed 

opportunity for offspring development among pollinating wasps.  This conflict over the 

fate of female flowers means that pollinating wasps should attempt to lay eggs in all 

Ficus ovules, whilst fig trees must limit wasp reproduction.  If pollinating wasps did 

successfully lay eggs in all ovules, seeds would not develop and the mutualism would 

disintegrate.  The interaction has however persisted for over 60 million years (Rønsted 

et al. 2005) suggesting that systems must be in place to limit the overexploitation of 

seeds by wasps (Yu et al. 2004). 

 

7.2 Summary of results 

I have considered different aspects of the fig/ fig wasp mutualism to investigate possible 

explanations for stability in this system.  Recent evidence in monoecious fig species 

(Nefdt and Compton 1996; Anstett 2001; Dunn et al. 2008b) has highlighted that 

pollinator larvae are often laid in inner ovules, closest to the fig wall whilst seed 

development is predominantly limited to outer ovules.  The short ovipositor hypothesis 

(SOH) was a theory proposed by Ramirez (1970a) to explain how the continuously 

distributed style lengths in monoecious Ficus may make outer flowers, closest to the fig 

wall, inaccessible to wasp ovipositors.  In Chapter 2, I investigated its applicability in 
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Ficus rubiginosa, a monoecious fig tree home to four cryptic species of pollinating fig 

wasps.  Genetic data identified the presence of three of the four pollinating species in 

Townsville, Australia, with all three species capable of accessing the vast majority of F. 

rubiginosa ovules.  Although the SOH was clearly not a valid explanation for stability 

in this system, applying it to externally ovipositing NPFWs, and in particular to 

parasitoid genera, helped to explain why pollinating wasps display an oviposition 

preference for short-styled flowers.  A significant proportion (33%) of the longest 

flowers (inner ovules) were out of reach to Sycoscapter parasitoids, potentially 

providing pollinator larvae developing in the innermost ovules with enemy-free space 

from parasite attack, and providing good evidence to support the optimal foraging 

hypothesis (Yu et al. 2004). 

In chapter 3, I considered the situation in Ficus racemosa where adult wasps in 

some syconia (about 4% of the population) fail to emerge.  Wasps and pollen from these 

syconia do not disperse.  Direct manipulation of the number of male pollinators within 

syconia identified that the failure of wasps to emerge is a consequence of low male 

count.  With less than ten males (and with NPFWs relying on male pollinators to 

produce exit holes), the likelihood of wasp emergence from syconia is significantly 

reduced.  Syconia where wasps did not emerge had lower proportions of male and 

female pollinators, but not significantly more parasitoids of pollinators compared with 

syconia where wasps emerged normally.  This suggests that low foundress number is 

likely to be responsible for the low male count and the consequent failure of wasps to 

exit these syconia. Moth and beetle larvae that burrow into F. racemosa syconia later on 

in their development may provide wasps trapped within syconia with some means of 

escape.  Whether or not these larvae can be considered indirect mutualists of the system 

is largely dependent on whether they predate the trapped wasps and how common they 

are among unexited figs to provide wasps with a regular means of dispersal. 

 Chapter 4 focused on the African fig species, F. burkei, and its internally 

ovipositing sycoecine NPFW, Philocaenus barbarus.  Philocaenus barbarus offspring 

were only found in syconia also containing the legitimate pollinator, E. stuckenbergi.  In 

their absence, however, E. stuckenbergi occupied longer flowers than in syconia shared 

with P. barbarus.  This species therefore has a negative effect on pollinator oviposition 

but no observable effect on seed set. 

 The impact of the green tree ant (Oecophylla smaragdina) on parasitism rates 

among F. racemosa syconia was considered in chapter 5.  Syconia where ants had been 

excluded produced higher proportions of emerging NPFWs and lower proportions of 

pollinators.  By predating externally ovipositing NPFWs (Schatz et al. 2006, 2008) in 
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particular, parasitoids of the pollinators, O. smaragdina workers can be considered 

indirect mutualists of fig trees and their pollinators in this system. 

 Finally, chapter 6 considered mutualism stability from a comparative 

coevolutionary perspective, and illustrated that the conflict (or its absence) over the 

production of seeds in monoecious (or dioecious) fig species influences the selective 

pressures acting on the morphology of fig trees and their associated wasps.  Monoecious 

and dioecious fig species with larger syconia had more flowers, bigger galls, bigger 

pollinators, thicker fig walls and parasitoids with longer ovipositors compared to species 

with smaller syconia.  Pollinators of larger monoecious (but not dioecious) syconia had 

more elongate heads and longer ovipositors than pollinators of smaller syconia, whilst 

larger dioecious, but not monoecious, syconia had walls that were disproportionately 

thick and parasitoids with disproportionately long ovipositors.  These results indicate 

that the fig breeding system can influence the trajectory of coevolution between fig trees 

and their associated wasps.  

 

7.3 Conclusions 

 From the results of the preceding chapters, it is becoming increasingly evident 

that, like a Russian Babushka doll, the fig/ pollinator mutualism often involves more 

species than just the pollinating wasps that live within individual syconia.  Moreover, 

whilst it is important to recognise that organisms external to the mutualism can (and do) 

exploit the system, it is also true that the mutualistic partners themselves can also be 

opportunistic exploiters.  Fig trees and their pollinators are therefore not automatically 

excluded from the mechanisms needed to maintain the stability of the system.  For 

example, a recent study of six Panamanian fig species identified that fig trees can 

impose ‘host sanctions’ on their pollinators by reducing the reproductive success of 

wasps that cheat the system by failing to pollinate (Jandér and Herre 2010).  Whilst 

passively pollinated fig trees appeared to impose no sanctions on their pollinator wasps 

(because pollination occurs largely via accidental transfer and the probability of wasps 

entering syconia without pollen is low), actively pollinated trees were more likely to 

abort fruit that housed these ‘free-loaders’ (Jandér and Herre 2010).   

With regards to a general mechanism for mutualism stability in the fig- wasp 

system, its existence seems increasingly unlikely (see Dunn et al. 2008b; Wang et al. 

2009).  A more likely outcome is that different fig/ fig wasp partnerships have one, or a 

number of mechanisms in place that contribute to stability in that particular system.  

Wang and others (2009) have recently identified that in F. racemosa in China, syconia 



                                                                                                                                  7.  General Conclusions                                                                                                          

 

 100 

are often underexploited by wasps in the summer (producing few seeds and galls), and 

overexploited in the winter (producing few seeds and many galls) because pollinator 

wasp lifespans are shorter and longer in these seasons, respectively.  Host control 

appears to occur, at least in part, via density-dependent closure of the ostiole which 

allows more foundresses entry into syconia thereby increasing wasp (and seed) 

production in the summer months when wasps are limiting.  In the winter months wasps 

are plentiful; however, given that interference competition increases with foundress 

number, by extending the period the ostiole remains open, fig trees are able to intensify 

competition among ovipositing females and increase seed production at a time when the 

conflict between fig tree and wasp is highest (Wang et al. 2009). 

Results from this thesis have identified that selective forces imposed by fig trees 

(e.g. thickened fig walls and narrow ostioles) can constrain the size and therefore 

fecundity of their associated pollinators and these selective forces can be influenced by 

the fig reproductive system.  Moreover, species external to the mutualism (e.g. non-

pollinating fig wasps and predatory ants) can be important third parties in the interaction.  

In F. rubiginosa, the short ovipositor hypothesis (with respect to externally ovipositing 

NPFWs) suggests that inner ovules furthest from the fig wall are those least accessible 

to NPFW ovipositors.  Consequently, these ovules are likely to be favoured oviposition 

sites for pollinator foundresses whose offspring are likely to suffer reduced rates of 

parasitism.  Outer ovules, closest to the fig wall are less favoured by foundresses, and, if 

pollinated, are more likely to become seeds.  Meanwhile, in F. racemosa, patrolling by 

the green tree ant, Oecophylla smaragdina, reduced the proportion of all NPFWs 

emerging from syconia and therefore reduced parasitism rates among pollinators.  These 

results present two very different mechanisms to explain how different fig/ wasp 

systems are not overexploited by pollinating and non-pollinating fig wasps, respectively.  

Further work to investigate the more general applicability of the parasitoid short 

ovipositor hypothesis in other fig/ fig wasp pairs, and the incidences and impacts of 

internally ovipositing non-pollinating fig wasps are both imperative to elucidate how 

important these are as general, if only partial, explanations for stability in the fig/ fig 

wasp mutualism. 
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