2,077 research outputs found

    Planet formation in highly inclined binaries

    Full text link
    We explore planet formation in binary systems around the central star where the protoplanetary disk plane is highly inclined with respect to the companion star orbit. This might be the most frequent scenario for binary separations larger than 40 AU, according to Hale (1994). We focus on planetesimal accretion and compute average impact velocities in the habitable region and up to 6 AU from the primary.Comment: Accepted for publication on A&

    Planetesimal collisions in binary systems

    Full text link
    We study the collisional evolution of km-sized planetesimals in tight binary star systems to investigate whether accretion towards protoplanets can proceed despite the strong gravitational perturbations from the secondary star. The orbits of planetesimals are numerically integrated in two dimensions under the influence of the two stars and gas drag. The masses and orbits of the planetesimals are allowed to evolve due to collisions with other planetesimals and accretion of collisional debris. In addition, the mass in debris can evolve due to planetesimal-planetesimal collisions and the creation of new planetesimals. We show that it is possible in principle for km-sized planetesimals to grow by two orders of magnitude in size if the efficiency of planetesimal formation is relatively low. We discuss the limitations of our two-dimensional approach.Comment: 5 pages, 5 figures, accepted for publication in MNRA

    A new code to study structures in collisionally active, perturbed debris discs. Application to binaries

    Full text link
    Debris discs are traditionally studied using two distinct types of numerical models: statistical particle-in-a-box codes to study their collisional and size distribution evolution, and dynamical N-body models to study their spatial structure. The absence of collisions from N-body codes is in particular a major shortcoming, as collisional processes are expected to significantly alter the results obtained from pure N-body runs. We present a new numerical model, to study the spatial structure of perturbed debris discs at dynamical and collisional steady-state. We focus on the competing effects between gravitational perturbations by a massive body (planet or star), collisional production of small grains, and radiation pressure placing these grains in possibly dynamically unstable regions. We consider a disc of parent bodies at dynamical steady-state, from which small radiation-pressure-affected grains are released in a series of runs, each corresponding to a different orbital position of the perturber, where particles are assigned a collisional destruction probability. These collisional runs produce successive position maps that are then recombined, following a complex procedure, to produce surface density profiles for each orbital position of the perturbing body. We apply our code to the case of a circumprimary disc in a binary. We find pronounced structures inside and outside the dynamical stability regions. For low eBe_B, the disc's structure is time varying, with spiral arms in the dynamically "forbidden" region precessing with the companion star. For high eBe_B, the disc is strongly asymmetric but time invariant, with a pronounced density drop in the binary's periastron direction. (better resolution version of the paper at http://lesia.obspm.fr/perso/philippe-thebault/theb2011.pdf)Comment: accepted for publication in Astronomy and Astrophysics /// There is a problem with the way Fig.1 looks on the astro-ph file. You can retrieve a correct version of the full paper at http://lesia.obspm.fr/perso/philippe-thebault/theb2011.pd

    On the eccentricity of self-gravitating circumstellar disks in eccentric binary systems

    Full text link
    We study the evolution of circumstellar massive disks around the primary star of a binary system focusing on the computation of disk eccentricity. In particular, we concentrate on its dependence on the binary eccentricity. Self-gravity is included in our numerical simulations. Our standard model assumes a semimajor axis for the binary of 30 AU, the most probable value according to the present binary statistics.Comment: Accepted for publication on A&

    Vertical structure of debris discs

    Full text link
    The vertical thickness of debris discs is often used as a measure of these systems' dynamical excitation and as clues to the presence of hidden massive perturbers such as planetary embryos. However, this argument could be flawed because the observed dust should be naturally placed on inclined orbits by the combined effect of radiation pressure and mutual collisions. We critically reinvestigate this issue and numerically estimate what the "natural" vertical thickness of a collisionally evolving disc is, in the absence of any additional perturbing body. We use a deterministic collisional code, following the dynamical evolution of a population of indestructible test grains suffering mutual inelastic impacts. Grain differential sizes as well as the effect of radiation pressure are taken into account. We find that, under the coupled effect of radiation pressure and collisions, grains naturally acquire inclinations of a few degrees. The disc is stratified with respect to grain sizes, with the smallest grains having the largest vertical dispersion and the bigger ones clustered closer to the midplane. Debris discs should have a minimum "natural" observed aspect ratio hmin∌0.04±0.02h_{min}\sim 0.04\pm0.02 at visible to mid-IR wavelengths where the flux is dominated by the smallest bound grains. These values are comparable to the estimated thicknesses of many vertically resolved debris discs, as is illustrated with the specific example of AU Mic. For all systems with h∌hminh \sim h_{min}, the presence (or absence) of embedded perturbing bodies cannot be inferred from the vertical dispersion of the discComment: accepted for publication in Astronomy and Astrophysics (full abstract in the pdf file

    Debris discs in binaries: a numerical study

    Full text link
    Debris disc analysis and modelling provide crucial information about the structure and the processes at play in extrasolar planetary systems. In binary systems, this issue is more complex because the disc should in addition respond to the companion star's perturbations. We explore the dynamical evolution of a collisionally active debris disc for different initial parent body populations, diverse binary configurations and optical depths. We focus on the radial extent and size distribution of the disc at a stationary state. We numerically follow the evolution of 10510^{5} massless small grains, initially produced from a circumprimary disc of parent bodies following a size distribution in dN∝s−3.5dN \propto s^{-3.5}ds . Grains are submitted to both stars' gravity as well as radiation pressure. In addition, particles are assigned an empirically derived collisional lifetime. For all the binary configurations the disc extends far beyond the critical semimajor axis acrita_crit for orbital stability. This is due to the steady production of small grains, placed on eccentric orbits reaching beyond acrita_crit by radiation pressure. The amount of matter beyond acrit depends on the balance between collisional production and dynamical removal rates: it increases for more massive discs as well as for eccentric binaries. Another important effect is that, in the dynamically stable region, the disc is depleted from its smallest grains. Both results could lead to observable signatures. We have shown that a companion star can never fully truncate a collisionally active disc. For eccentric companions, grains in the unstable regions can significantly contribute to the thermal emission in the mid-IR. Discs with sharp outer edges, especially bright ones such as HR4796A, are probably shaped by other mechanisms.Comment: accepted for publication in A&

    LIDT-DD: A new self-consistent debris disc model including radiation pressure and coupling collisional and dynamical evolution

    Get PDF
    In most current debris disc models, the dynamical and the collisional evolutions are studied separately, with N-body and statistical codes, respectively, because of stringent computational constraints. We present here LIDT-DD, the first code able to mix both approaches in a fully self-consistent way. Our aim is for it to be generic enough so as to be applied to any astrophysical cases where we expect dynamics and collisions to be deeply interlocked with one another: planets in discs, violent massive breakups, destabilized planetesimal belts, exozodiacal discs, etc. The code takes its basic architecture from the LIDT3D algorithm developed by Charnoz et al.(2012) for protoplanetary discs, but has been strongly modified and updated in order to handle the very constraining specificities of debris discs physics: high-velocity fragmenting collisions, radiation-pressure affected orbits, absence of gas, etc. In LIDT-DD, grains of a given size at a given location in a disc are grouped into "super-particles", whose orbits are evolved with an N-body code and whose mutual collisions are individually tracked and treated using a particle-in-a-box prescription. To cope with the wide range of possible dynamics, tracers are sorted and regrouped into dynamical families depending on their orbits. The code retrieves the classical features known for debris discs, such as the particle size distributions in unperturbed discs, the outer radial density profiles (slope in -1.5) outside narrow collisionally active rings, and the depletion of small grains in "dynamically cold" discs. The potential of the new code is illustrated with the test case of the violent breakup of a massive planetesimal within a debris disc. The main potential future applications of the code are planet/disc interactions, and more generally any configurations where dynamics and collisions are expected to be intricately connected.Comment: Accepted for publication in A&A. 20 pages, 17 figures. Abstract shortened for astro-p

    Superpositions of the cosmological constant allow for singularity resolution and unitary evolution in quantum cosmology

    Get PDF
    A novel approach to quantization is shown to allow for superpositions of the cosmological constant in isotropic and homogeneous mini-superspace models. Generic solutions featuring such superpositions display unitary evolution and resolution of the classical singularity. Physically well-motivated cosmological solutions are constructed. These particular solutions exhibit characteristic features of a cosmic bounce including universal phenomenology that can be rendered insensitive to Planck-scale physics in a natural manner.Comment: Version accepted to Physics Letters B. Minor revisions, clarifications added. 7 pages, 3 figure

    Relative velocities among accreting planetesimals in binary systems: the circumbinary case

    Full text link
    We numerically investigate the possibility of planetesimal accretion in circumbinary disks, under the coupled influence of both stars' secular perturbations and friction due to the gaseous component of the protoplanetary disk. We focus on one crucial parameter: the distribution of encounter velocities between planetesimals in the 0.5 to 100km size range. An extended range of binary systems with differing orbital parameters is explored. The resulting encounter velocities are compared to the threshold velocities below which the net outcome of a collision is accumulation into a larger body instead of mass erosion. For each binary configuration, we derive the critical radial distance from the binary barycenter beyond which planetesimal accretion is possible. This critical radial distance is smallest for equal-mass binaries on almost circular orbits. It shifts to larger values for increasing eccentricities and decreasing mass ratio. The importance of the planetesimals' orbital alignments of planetesimals due to gas drag effects is discussed.Comment: accepted for publication in MNRA

    Critical Temperature Range in Standard and Ni-bearing Spheroidal Graphite Cast Irons

    Get PDF
    Describing the conditions for reaustenitization of spheroidal graphite cast irons is of interest for their heat-treatment after casting, e.g. for manufacturing austempered ductile irons. Differential thermal analysis has been used to characterize the direct eutectoid transformation and the reverse transformation, i.e. the reaustenitization. This has been applied to a standard and a Ni-bearing alloy, with a ferritic matrix for the former, both a ferritic and a pearlitic matrix for the latter. The results are discussed in relation with the stable and metastable three phase fields. While earlier description of the direct eutectoid transformation is confirmed, the one for reverse eutectoid has been found more complex and is amended
    • 

    corecore