58 research outputs found

    The Use of MotusBASEBALL For Pitch Monitoring and Injury Prevention

    Get PDF
    Introduction: MotusBASEBALL (MOTUS) has proven to be a reliable and accurate method for evaluating the multifactorial kinesiology involved with pitching. We sought to review the use of MOTUS in assessment of pitching parameters and identify its practicality as an injury prevention tool across the literature. Methods: A systemic review of the literature was preformed, using key words such as MOTUS, baseball, pitcher, sensor and arm sleeve, identifying 77 total articles. Inclusion criteria entailed original articles that used MOTUS and studied baseball pitchers across any level of sport. Results: A total of 13 articles met the inclusion criteria, producing a sample of 493 male athletes with a mean age of 18.7. Uniformly across studies, elbow torque was a primary metric and was observed in relation to a wide range of variables, such as pitch type, height, weight and arm length. Additionally, MOTUS was able to detect several other pitching metrics, such as arm speed, shoulder rotation and arm slot, displaying a wide range of capabilities. Conclusion: We suspect MOTUS technology could become a significant tool for observing pitching mechanics in real time, as well as an injury prevention tool to be used by players, coaches and trainers across all levels of baseball

    Developments in cell biology for quantitative immunoelectron microscopy based on thin sections: a review

    Get PDF
    Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Molecular insights into the premature aging disease progeria

    Get PDF

    A new insulated caudalis nucleus DREZ electrode

    No full text

    Acetylsalicylic acid enhances purinergic receptor-mediated outward currents in rat megakaryocytes

    No full text
    Purinergic receptor activation increases cytosolic Ca2+ concentration in a fluctuating fashion, triggering oscillatory outward Ca2+-activated K+ currents in rat megakaryocytes (MKs). Whole cell and nystatin-perforated patch-clamp techniques were used to analyze changes in ionic conductance in MK with acetylsalicylic acid (ASA), a cyclooxygenase-1 inhibitor and antithrombotic agent. MKs are a model for platelet reactivity, particularly in ASA treatment failure (ASA resistance). Freshly isolated MKs were incubated 30 min in the absence or presence of 1 mM ASA. Using a K+-rich internal solution, we recorded outward currents in response to 10 μM ATP, 10 μM ADP, and 5 μM 2-methyl-thio-ADP (2MeSADP) in the voltage-clamp mode. Agonist-induced currents decreased in amplitude over time, but this decline was attenuated by ASA in both continuous and repeated agonist challenge, indicating increased MK reactivity with ASA treatment. In separate experiments, heterologous desensitization was observed when MKs were stimulated with ADP after exposure to a thromboxane receptor agonist (U46619), indicating cross talk between thromboxane and purinergic pathways. Different cells, treated with ASA or MRS2179 (P2Y1 receptor antagonist), were stimulated with 2MeSADP. The dose-response curve was shifted to the left in both cases, suggesting increased MK reactivity. ASA also caused an increased interval between currents (delay). ASA attenuated desensitization of purinergic receptors and increased delay, again suggesting cross talk between purinergic and thromboxane pathways. These findings may be relevant to ASA resistance, because individual variations in sensitivity to the multiple effects of ASA on signaling pathways could result in insensitivity to its antiplatelet effects in some patients

    Clinical, Biochemical, and Radiological Characteristics of a Single-Center Retrospective Cohort of 705 Large Adrenal Tumors

    No full text
    Objective: To characterize large adrenal tumors (≥4 cm in diameter) and to identify features associated with malignancy. Patients and Methods: We investigated the clinical, biochemical, and imaging characteristics in a large retrospective single-center cohort of patients with adrenal tumors of 4 cm or more in diameter during the period of January 1, 2000, through December 31, 2014. Results: Of 4085 patients with adrenal tumors, 705 (17%) had adrenal masses measuring 4 cm or more in diameter; of these, 373 (53%) were women, with a median age of 59 years (range, 18-91 years) and median tumor size of 5.2 cm (range, 4.0-24.4 cm). Underlying diagnoses were adrenocortical adenomas (n=216 [31%]), pheochromocytomas (n=158 [22%]), other benign adrenal tumors (n=116 [16%]), adrenocortical carcinomas (n=88 [13%]), and other malignant tumors (n=127 [18%]). Compared with benign tumors, malignant tumors were less frequently diagnosed incidentally (45.5% vs 86.7%), were larger (7 cm [range, 4-24.4 cm] vs 5 cm [range, 4-20 cm]), and had higher unenhanced computed tomographic (CT) attenuation (34.5 Hounsfield units [HU] [range, 14.1-75.5 HU] vs 11.5 HU [range, −110 to 71.3 HU]; P<.001). On multivariate analysis, older age at diagnosis, male sex, nonincidental mode of discovery, larger tumor size, and higher unenhanced CT attenuation were all found to be statistically significant predictors of malignancy. Conclusion: The prevalence of malignancy in patients with adrenal tumors of 4 cm or more in diameter was 31%. Older age, male sex, nonincidental mode of discovery, larger tumor size, and higher unenhanced CT attenuation were associated with an increased risk for malignancy. Clinical context should guide management in patients with adrenal tumors of 4 cm or more in diameter
    corecore