4,494 research outputs found

    The ATLAS barrel level-1 Muon Trigger Sector-Logic/RX off-detector trigger and acquisition board

    Get PDF
    The ATLAS experiment uses a system of three concentric layers of Resistive Plate Chambers (RPC) detector for the Level-1 Muon Trigger in the air-core barrel toroid region. The trigger algorithm looks for hit coincidences within different detector layers inside the programmable geometrical road which defines the transverse momentum cut. The on-detector electronics that provides the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Trigger and readout data are then sent via optical fibres to the off-detector electronics. Six or seven optical fibres from one of the 64 trigger sectors go to one Sector-Logic/RX module, that later elaborates the collected trigger and readout data, and sends data respectively to the Read-Out Driver modules and to the Central Level-1 Trigger. We present the functionality and the implementation of the VME Sector-Logic/RX module, and the configuration of the system for the first cosmic ray data collected using this module

    Ageing test of the ATLAS RPCs at X5-GIF

    Full text link
    An ageing test of three ATLAS production RPC stations is in course at X5-GIF, the CERN irradiation facility. The chamber efficiencies are monitored using cosmic rays triggered by a scintillator hodoscope. Higher statistics measurements are made when the X5 muon beam is available. We report here the measurements of the efficiency versus operating voltage at different source intensities, up to a maximum counting rate of about 700Hz/cm^2. We describe the performance of the chambers during the test up to an overall ageing of 4 ATLAS equivalent years corresponding to an integrated charge of 0.12C/cm^2, including a safety factor of 5.Comment: 4 pages. Presented at the VII Workshop on Resistive Plate Chambers and Related Detectors; Clermont-Ferrand October 20th-22nd, 200

    Prospective study on nanoparticle albumin-bound paclitaxel in advanced breast cancer. Clinical results and biological observations in taxane-pretreated patients

    Get PDF
    Background: There is a deep need to improve the care of metastatic breast cancer (MBC) patients, since even today it remains an incurable disease. Taxanes are considered the most effective cytotoxic drugs for the treatment of MBC, both in monotherapy and in combined schedules, but the need for synthetic solvents contributes to the severe toxicities and may have a negative impact on the efficacy. Nanoparticle albumin-bound paclitaxel (Nab-paclitaxel) is a colloidal suspension of paclitaxel and human serum albumin initially developed to avoid the toxicities associated with conventional taxanes. Patients and methods: The aim of this prospective, single-center open-label, noncomparative study was to evaluate the efficacy and safety of nab-paclitaxel in MBC patients pretreated with taxanes. The patients were treated with nab-paclitaxel as a single agent, 260 mg/m2 on day 1 of each 3-week cycle or 125 mg/m2 weekly. The primary endpoint was the overall response rate (ORR). Secondary objectives were duration of response, clinical benefit rate, progression-free survival (PFS), overall survival, and safety. Results: A total of 42 patients (median age 48 years, median Eastern Cooperative Oncology Group performance status 0, triple-negative MBC 19%, all pretreated with a taxane-based therapy, mainly in advanced disease) were enrolled in the study. The ORR was 23.8%, including one complete response (2.4%) and nine partial responses (21.4%); the disease control rate was 50%. The median duration of response was 7.2 months. After a median follow-up of 9 months, the median PFS was 4.6 months. ORR and PFS were similar irrespective of the previous chemotherapy lines, metastatic sites, and biomolecular expression. Nab-paclitaxel was well tolerated, and the most frequent treatment-related toxicities were mild to moderate (grades 1–2). Conclusion: This real-life study shows that nab-paclitaxel has a significant antitumor activity and a manageable safety profile in patients pretreated with taxanes and experiencing a treatment failure after at least one line of chemotherapy

    Radiation test and application of FPGAs in the ATLAS Level 1 Trigger

    Get PDF
    The front-end system of the Silicon Drift Detectors (SDDs) of the ALICE experiment is made of two ASICs. The first chip performs the preamplification, temporary analogue storage and analogue-to-digital conversion of the detector signals. The second chip is a digital buffer that allows for a significant reduction of the connection from the front-end module to the outside world. In this paper, the results achieved on the first complete prototype of the front-end system for the SDDs of ALICE are presented

    The ATLAS Barrel Level-1 Muon Trigger Calibration

    Get PDF
    The ATLAS experiment uses a system of three concentric Resistive Plate Chambers detectors layers for the level-1 muon trigger in the air-core barrel toroid region. The trigger classifies muons within different programmable transverse momentum ranges, and tags the identified tracks with the corresponding bunch crossing number. The algorithm looks for hit coincidences within different detector layers inside the programmed geometrical road which defines the transverse momentum cut. The on-detector electronics providing the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Because of the different time-of-flights and cables and optical fibres lengths, signals have to be adjusted in time in order to be correctly aligned before being processed. Programmable delay logics are provided in the trigger and readout system to allow for time adjustment, for hit signals as well as for LHC Timing, Trigger and Control signals. The trigger calibration provides the set of numbers used during electronics initialization for correctly aligning signals inside the trigger and readout system. The functionality scheme and the algorithm of the calibration are presented

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
    corecore