4,386 research outputs found

    Distance Dependence of the Energy Transfer Rate From a Single Semiconductor Nanostructure to Graphene

    Full text link
    The near-field Coulomb interaction between a nano-emitter and a graphene monolayer results in strong F\"orster-type resonant energy transfer and subsequent fluorescence quenching. Here, we investigate the distance dependence of the energy transfer rate from individual, i) zero-dimensional CdSe/CdS nanocrystals and ii) two-dimensional CdSe/CdS/ZnS nanoplatelets to a graphene monolayer. For increasing distances dd, the energy transfer rate from individual nanocrystals to graphene decays as 1/d41/d^4. In contrast, the distance dependence of the energy transfer rate from a two-dimensional nanoplatelet to graphene deviates from a simple power law, but is well described by a theoretical model, which considers a thermal distribution of free excitons in a two-dimensional quantum well. Our results show that accurate distance measurements can be performed at the single particle level using graphene-based molecular rulers and that energy transfer allows probing dimensionality effects at the nanoscale.Comment: Main text (+ 5 figures) and Supporting Information (+ 7 figures

    Determination of the branching ratios Γ(KL3π0)/Γ(KLπ+ππ0)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) and Γ(KL3π0)/Γ(KLπeν)\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu )

    Get PDF
    Improved branching ratios were measured for the KL3π0K_L \to 3 \pi^0 decay in a neutral beam at the CERN SPS with the NA31 detector: Γ(KL3π0)/Γ(KLπ+ππ0)=1.611±0.037\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi^+ \pi^- \pi^0) = 1.611 \pm 0.037 and Γ(KL3π0)/Γ(KLπeν)=0.545±0.010\Gamma (K_L \to 3 \pi^0) / \Gamma (K_L \to \pi e \nu ) = 0.545 \pm 0.010. From the first number an upper limit for ΔI=5/2\Delta I =5/2 and ΔI=7/2\Delta I = 7/2 transitions in neutral kaon decay is derived. Using older results for the Ke3/Kμ\mu 3 fraction, the 3π0\pi^0 branching ratio is found to be Γ(KL3π0)/Γtot=(0.211±0.003)\Gamma (K_L \to 3 \pi^0 )/ \Gamma_{tot} = (0.211 \pm 0.003), about a factor three more precise than from previous experiments

    Constraints on Non-Standard Neutrino Interactions and Unparticle Physics with Neutrino-Electron Scattering at the Kuo-Sheng Nuclear Power Reactor

    Full text link
    Neutrino-electron scatterings are purely leptonic processes with robust Standard Model (SM) predictions. Their measurements can therefore provide constraints to physics beyond SM. The \nuebar-e data taken at the Kuo-Sheng Reactor Neutrino Laboratory were used to probe two scenarios: Non-Standard Neutrino Interactions (NSI) and Unparticle Physics. New constraints were placed to the NSI parameters (\el,\er) and (\etl,\etr) for the Non-Universal and Flavor-Changing channels, respectively, as well as to the coupling constants for scalar (λ0\lambda_0) and vector (λ1\lambda_1) unparticles to the neutrinos and electrons.Comment: 8 pages, 6 figures, 1 table ; Published Version in V2 with minor revision

    Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    Get PDF
    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resolution is found to be about 10% sqrt(E) for the sampling term and about 0.2% for the local constant term

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase

    Position resolution and particle identification with the ATLAS EM calorimeter

    Full text link
    In the years between 2000 and 2002 several pre-series and series modules of the ATLAS EM barrel and end-cap calorimeter were exposed to electron, photon and pion beams. The performance of the calorimeter with respect to its finely segmented first sampling has been studied. The polar angle resolution has been found to be in the range 50-60 mrad/sqrt(E (GeV)). The neutral pion rejection has been measured to be about 3.5 for 90% photon selection efficiency at pT=50 GeV/c. Electron-pion separation studies have indicated that a pion fake rate of (0.07-0.5)% can be achieved while maintaining 90% electron identification efficiency for energies up to 40 GeV.Comment: 32 pages, 22 figures, to be published in NIM

    Leading order analysis of neutrino induced dimuon events in the CHORUS experiment

    Get PDF
    We present a leading order QCD analysis of a sample of neutrino induced charged-current events with two muons in the final state originating in the lead-scintillating fibre calorimeter of the CHORUS detector. The results are based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign dimuon events collected during the exposure of the detector to the CERN Wide Band Neutrino Beam between 1995 and 1998. % with Eμ1,Eμ2>5E_{\mu 1},E_{\mu 2} > 5 GeV and Q2>3Q^2 > 3 GeV2^2 collected %between 1995 and 1998. The analysis yields a value of the charm quark mass of \mc = (1.26\pm 0.16 \pm 0.09) \GeVcc and a value of the ratio of the strange to non-strange sea in the nucleon of κ=0.33±0.05±0.05\kappa = 0.33 \pm 0.05 \pm 0.05, improving the results obtained in similar analyses by previous experiments.Comment: Submitted to Nuclear Physics

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore