676 research outputs found
The INFN-grid testbed
The Italian INFN-Grid Project is committed to set-up, run and manage an unprecedented nation-wide Grid infrastructure. The implementation and use of this INFN-Grid Testbed is presented and discussed. Particular care and attention are devoted to those activities, relevant for the management of the Testbed, carried out by the INFN within international Grid Projects
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Calibration of advanced Virgo and reconstruction of the detector strain h( t) during the observing run O3
The three advanced Virgo and LIGO gravitational wave detectors participated to the third observing run (O3) between 1 April 2019 15:00 UTC and 27 March 2020 17:00 UTC, leading to several gravitational wave detections per month. This paper describes the advanced Virgo detector calibration and the reconstruction of the detector strain h(t) during O3, as well as the estimation of the associated uncertainties. For the first time, the photon calibration technique as been used as reference for Virgo calibration, which allowed to cross-calibrate the strain amplitude of the Virgo and LIGO detectors. The previous reference, so-called free swinging Michelson technique, has still been used but as an independent cross-check. h(t) reconstruction and noise subtraction were processed online, with good enough quality to prevent the need for offline reprocessing, except for the two last weeks of September 2019. The uncertainties for the reconstructed h(t) strain, estimated in this paper in a 20-2000 Hz frequency band, are frequency independent: 5% in amplitude, 35 mrad in phase and 10 μs in timing, with the exception of larger uncertainties around 50 Hz
Effects of Data Quality Vetoes on a Search for Compact Binary Coalescences in Advanced LIGO's First Observing Run
The first observing run of Advanced LIGO spanned 4 months, from September 12,
2015 to January 19, 2016, during which gravitational waves were directly
detected from two binary black hole systems, namely GW150914 and GW151226.
Confident detection of gravitational waves requires an understanding of
instrumental transients and artifacts that can reduce the sensitivity of a
search. Studies of the quality of the detector data yield insights into the
cause of instrumental artifacts and data quality vetoes specific to a search
are produced to mitigate the effects of problematic data. In this paper, the
systematic removal of noisy data from analysis time is shown to improve the
sensitivity of searches for compact binary coalescences. The output of the
PyCBC pipeline, which is a python-based code package used to search for
gravitational wave signals from compact binary coalescences, is used as a
metric for improvement. GW150914 was a loud enough signal that removing noisy
data did not improve its significance. However, the removal of data with excess
noise decreased the false alarm rate of GW151226 by more than two orders of
magnitude, from 1 in 770 years to less than 1 in 186000 years.Comment: 27 pages, 13 figures, published versio
A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart
We perform a statistical standard siren analysis of GW170817. Our analysis does not utilize knowledge of NGC 4993 as the unique host galaxy of the optical counterpart to GW170817. Instead, we consider each galaxy within the GW170817 localization region as a potential host; combining the redshifts from all of the galaxies with the distance estimate from GW170817 provides an estimate of the Hubble constant, H 0. Considering all galaxies brighter than as equally likely to host a binary neutron star merger, we find km s−1 Mpc−1 (maximum a posteriori and 68.3% highest density posterior interval; assuming a flat H 0 prior in the range km s−1 Mpc−1). We explore the dependence of our results on the thresholds by which galaxies are included in our sample, and we show that weighting the host galaxies by stellar mass or star formation rate provides entirely consistent results with potentially tighter constraints. By applying the method to simulated gravitational-wave events and a realistic galaxy catalog we show that, because of the small localization volume, this statistical standard siren analysis of GW170817 provides an unusually informative (top 10%) constraint. Under optimistic assumptions for galaxy completeness and redshift uncertainty, we find that dark binary neutron star measurements of H 0 will converge as , where N is the number of sources. While these statistical estimates are inferior to the value from the counterpart standard siren measurement utilizing NGC 4993 as the unique host, km s−1 Mpc−1 (determined from the same publicly available data), our analysis is a proof-of-principle demonstration of the statistical approach first proposed by Bernard Schutz over 30 yr ago
First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814
International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
The Advanced Virgo+ status
The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
- …