27 research outputs found
ВПЛИВ ТРЕНУВАЛЬНОГО ПРОЦЕСУ НА ПІДВИЩЕННЯ ФУНКЦІОНАЛЬНИХ МОЖЛИВОСТЕЙ ГРАВЦІВ
The article deals with the questions of physical loading ofplayers in football hall. The components of loading and their impact on functional abilities of students are studied
SELEX RICH Performance and Physics Results
SELEX took data in the 1996/7 Fixed Target Run at Fermilab. The excellent
performance parameters of the SELEX RICH Detector had direct influence on the
quality of the obtained physics results.Comment: Contributed talk at the Fourth Workshop on RICH Detectors, June 5-10,
2002, Pylos, Greece. Accepted for publication in NIM
Measurement of the Ds lifetime
We report precise measurement of the Ds meson lifetime. The data were taken
by the SELEX experiment (E781) spectrometer using 600 GeV/c Sigma-, pi- and p
beams. The measurement has been done using 918 reconstructed Ds. The lifetime
of the Ds is measured to be 472.5 +- 17.2 +- 6.6 fs, using K*(892)0K+- and phi
pi+- decay modes. The lifetime ratio of Ds to D0 is 1.145+-0.049.Comment: 5 pages, 2 figures submitted to Phys. Lett.
Confirmation of the Double Charm Baryon Xi_cc+ via its Decay to p D+ K-
We observes a signal for the double charm baryon Xi_cc+ in the charged decay
mode Xi_cc+ -> p D+ K- to complement the previously reported decay Xi_cc+ ->
Lambda_c K- pi+ in data from SELEX, the charm hadro-production experiment
(E781) at Fermilab. In this new decay mode we observe an excess of 5.62 events
over an expected background estimated by event mixing to be 1.38+/-0.13 events.
The Poisson probability that a background fluctuation can produce the apparent
signal is less than 6.4E-4. The observed mass of this state is
(3518+/-3)MeV/c^2, consistent with the published result. Averaging the two
results gives a mass of (3518.7+/-1.7)MeV/c^2. The observation of this new weak
decay mode confirms the previous SELEX suggestion that this state is a double
charm baryon. The relative branching ratio Gamma(Xi_cc+ -> pD+K-)/Gamma(Xi_cc+
-> Lambda_c K- pi+) = 0.36+/-0.21.Comment: 11 pages, 6 included eps figures. v2 includes improved statistical
method to determine significance of observation. Submitted to PL
Hadronic Production of Lambda_c from 600 GeV/c pion, sigma and proton beams
We present data from Fermilab experiment E781 (SELEX) on the hadroproduction
asymmetry for anti-Lambda_c compared to Lambda_c+ as a function of xF and pt2
distributions for Lambda_c+. These data were measured in the same apparatus
using incident pi-, sigma- beams at 600 GeV/c and proton beam at 540 GeV/c. The
asymmetry is studied as a function of xF. In the forward hemisphere with xF >=
0.2 both baryon beams exhibit very strong preference for producing charm
baryons rather than charm antibaryons, while the pion beam asymmetry is much
smaller. In this energy regime the results show that beam fragments play a
major role in the kinematics of Lambda_c formation, as suggested by the leading
quark picture.Comment: 6 pages, 5 figures (postscript), RevTeX, submitted to Phy. Rev. Let
First Observation of the Cabibbo-suppressed Decays Xi_c+ -> Sigma+ pi- pi+ and Xi_c+ -> Sigma- pi+ pi+ and Measurement of their Branching Ratios
We report the first observation of two Cabibbo-suppressed decay modes, Xi_c+
-> Sigma+ pi- pi+ and Xi_c+ -> Sigma- pi+ pi+. We observe 59+/-14 over a
background of 87, and 22+/-8 over a background of 13 events, respectively, for
the signals. The data were accumulated using the SELEX spectrometer during the
1996-1997 fixed target run at Fermilab, chiefly from a 600GeV/c Sigma- beam.
The branching ratios of the decays relative to the Cabibbo--favored Xi_c+ ->
Xi- pi+ pi+ are measured to be B(Xi_c+ -> Sigma+ pi- pi+)/B(Xi_c+ -> Xi- pi+
pi+) = 0.48+/-0.20, and B(Xi_c+ -> Sigma- pi+ pi+)/B(Xi_c+ -> Xi- pi+ pi+) =
0.18+/-0.09, respectively. We also report branching ratios for the same decay
modes of the Lambda_c+ relative to Lambda_c+ -> p K- pi+.Comment: 15 pages, 5 figures, version 2 as accepted in PL
Total Cross Section Measurements With π- , Σ- And Protons On Nuclei And Nucleons Around 600 Gev/c
Total cross sections for Σ- and π- on beryllium, carbon, polyethylene and copper as well as total cross sections for protons on beryllium and carbon have been measured in a broad momentum range around 600GeV/c . These measurements were performed with a transmission technique in the SELEX hyperon-beam experiment at Fermilab. We report on results obtained for hadron-nucleus cross sections and on results for σtot(Σ-N) and σtot(π-N) , which were deduced from nuclear cross sections. © 2000 Elsevier Science B.V.57901/02/15277312Langland, J.L., (1995) Ph.D. Thesis, , University of IowaKleinfelder, S.A., (1988) IEEE Trans. Nucl. Sci., 35 (1)Dersch, U., (1998) Ph.D. Thesis, HeidelbergBiagi, S.F., (1981) Nucl. Phys. B, 186, pp. 1-21Bellettini, G., (1966) Nucl. Phys., 79, pp. 609-624Schiz, A.M., (1980) Phys. Rev. D, 21, pp. 3010-3022Murthy, P.V.R., (1975) Nucl. Phys. B, 92, pp. 269-308Caso, C., (1998) Eur. Phys. J. C, 3. , http://pdg.lbl.gov/1998/contents_plots.html, and data on total cross sections from computer readable filesSchiz, A.M., (1979) Ph.D. Thesis, , Yale University(1973) Landolt Börnstein Tables, 7. , Springer editionEngler, J., (1970) Phys. Lett. B, 32, pp. 716-719Babaev, A., (1974) Phys. Lett. B, 51, pp. 501-504Glauber, R.J., (1959) Boulder Lectures, pp. 315-413Franco, V., (1972) Phys. Rev. C, 6, pp. 748-757Karmanov, V.A., Kondratyuk, L.A., (1973) JETP Lett., 18, pp. 266-268Burq, J.P., (1983) Nucl. Phys. B, 217, pp. 285-335Gross, D., (1978) Phys. Rev. Lett., 41, pp. 217-220Beznogikh, G.G., (1972) Phys. Lett. B, 39, pp. 411-413Vorobyov, A.A., (1972) Phys. Lett. B, 41, pp. 639-641Foley, K.J., (1967) Phys. Rev. Lett., 19, pp. 857-859Fajardo, L.A., (1981) Phys. Rev. D, 24, pp. 46-65Jenni, P., (1977) Nucl. Phys. B, 129, pp. 232-252Breedon, R.E., (1989) Phys. Rev. Lett. B, 216, pp. 459-465Amos, N., (1983) Phys. Rev. Lett. B, 128, pp. 343-348Amaldi, U., (1977) Phys. Rev. Lett. B, 66, pp. 390-394Amos, N., (1985) Nucl. Phys. B, 262, pp. 689-714Akopin, V.D., (1977) Sov. J. Nucl. Phys., 25, pp. 51-55Amirkhanov, I.V., (1973) Sov. J. Nucl. Phys., 17, pp. 636-637Foley, K.J., (1969) Phys. Rev., 181, pp. 1775-1793Apokin, V.D., (1976) Nucl. Phys. B, 106, pp. 413-429Burq, J.P., (1982) Phys. Lett. B, 109, pp. 124-127Dakhno, L.G., (1983) Sov. J. Nucl. Phys., 37, pp. 590-598Kazarinov, M., (1976) Sov. Phys. JETP, 43, pp. 598-606De Jager, C.W., (1974) At. Data Nucl. Data Tables, 14, pp. 479-508Donnachie, A., Landshoff, P.V., (1992) Phys. Lett. B, 296, pp. 227-232Lipkin, H., (1975) Phys. Rev. D, 11, pp. 1827-1831Barnett, R.M., (1996) Phys. Rev. D, 54, pp. 191-192Carroll, A.S., (1979) Phys. Lett. B, 80, pp. 423-427Badier, J., (1972) Phys. Lett. B, 41, pp. 387-39
Total Cross Section Measurements with pi-, Sigma- and Protons on Nuclei and Nucleons around 600 GeV/c
Total cross sections for Sigma- and pi- on beryllium, carbon, polyethylene
and copper as well as total cross sections for protons on beryllium and carbon
have been measured in a broad momentum range around 600GeV/c. These
measurements were performed with a transmission technique adapted to the SELEX
hyperon-beam experiment at Fermilab. We report on results obtained for
hadron-nucleus cross sections and on results for sigma_tot(Sigma- N) and
sigma_tot(pi- N), which were deduced from nuclear cross sections.Comment: 42 pages, submitted to Nucl.Phys.
The performance of the jet trigger for the ATLAS detector during 2011 data taking
The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction