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Abstract

Total cross sections for6− andπ− on beryllium, carbon, polyethylene and copper as well as
total cross sections for protons on beryllium and carbon have been measured in a broad momentum
range around 600GeV/c. These measurements were performed with a transmission technique in the
SELEX hyperon-beam experiment at Fermilab. We report on results obtained for hadron–nucleus
cross sections and on results forσtot(6

−N) andσtot(π
−N), which were deduced from nuclear cross
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1. Introduction

Hadronic total cross sections provide one measure of the strength of the hadronic
interaction. They have been measured for a variety of reactions over a broad range of
center of mass energies. These studies revealed that with increasing center of mass (CM)
energy, hadron–hadron cross sections (generally) decrease to a minimum and then start
rising again. An important current physics question is whether the rise of a specific hadron–
hadron cross section is described by a power law in the CM energy. Addressing this
question requires total cross-section experiments performed with a variety of hadronic
projectiles, targets and energies covering the maximum possible range. However, for
almost 20 years, there have been few new experiments in this field. Thus, important
hadron–hadron cross sections such asσtot(πp) and σtot(Kp) are measured only up
to 380 GeV/c and σtot(6

−p) is only measured up to 137 GeV/c. At these maximum
laboratory momenta only a first indication of the rise of these total cross sections is
observed.

SELEX (Fermilab E781) is a fixed-target experiment at the Fermi National Accelerator
Laboratory using a hyperon beam of about 600 GeV/c. The SELEX spectrometer, designed
for spectroscopy of charm baryons, is well-suited to measure total cross sections with a
transmission technique. It has excellent scattering-angle resolution, achieved by a system
of silicon microstrip detectors.

SELEX does not have a liquid hydrogen target. Therefore, we measured the to-
tal hadron–nucleus cross sectionsσtot(π

−Be), σtot(π
−C), σtot(π

−CH2), σtot(6
−Be),

σtot(6
−C), σtot(6

−CH2), σtot(pBe) andσtot(pC) with high precision. We then deduced
the total cross sectionsσtot(6

−p) andσtot(π
−p) using both a CH2–C subtraction tech-

nique and a method based on the Glauber model to derive hadron–nucleon cross sections
from hadron–nucleus cross sections.

Further, as data on hadron–nucleus cross sections are extremely scarce for charged
projectiles, we also measuredσtot(π

−Cu) andσtot(6
−Cu). All measurements were done

during dedicated run periods in July 1997. Laboratory momenta range from 455 GeV/c to
635 GeV/c, the highest energy yet used for these studies.

2. Experimental setup

2.1. The hyperon beam

The hyperon beam is generated by selecting positively or negatively charged secondaries
around 600 GeV/c that emerge from interactions of an 800 GeV/c primary proton beam
with a beryllium production target. Its composition has not been completely measured.
However, we have measured the main particle components of the event samples, which we
selected to determine total cross sections (see Section 5.2.1). This analysis shows that at
the position of the total cross-section target the negative beam samples consist in average
of (52.5± 1.6)% mesons and (47.5± 1.6)% baryons. Further, we measured a4− fraction
of (1.18± 0.06)% in these samples. Other baryonic fractions (p,�−) were not measured,
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but empirical formulae (see [1]) predict they are less than 0.1%. Likewise, the K− fraction
of the negative beam is estimated with [1] to be (1.6± 1.0)%. Thus, we expect that theπ−
fraction of the event samples is (50.9± 1.9)% and the6− fraction is (46.3± 1.6)%.

In the event samples for positive beam we measured a meson fraction of (8.1± 1.4)%
and a baryon fraction of (91.9± 1.4)%. The measured6+ fraction was (2.7± 0.7)%.
Using the empirical formula given in [1], we expect that the tiny meson fraction consists
of 70%π+ and 30% K+. Thus, the samples for positive beam consisted to (89.2± 1.6)%
of protons.

From these compositions, one sees that as long as one can distinguish mesons from
baryons (see Section 2.2), the SELEX hyperon beam offers a unique possibility to measure
total cross sections for protons,π−, and6− in a low contaminant environment.

2.2. The section of the SELEX spectrometer used for total cross-section measurements

The SELEX spectrometer is a 60 m long, 3 stage spectrometer. In total cross-section
measurements, only its upstream detectors, shown in Fig. 1, are used.

The beam spectrometer placed in front of the target, is equipped with 12 silicon
microstrip detectors to track incoming particles. The first 4 microstrip detectors (HSDs)
have a resolution (pitch/

√
12) of 14.4µm and a maximum signal integration time of 100 ns.

As this is the shortest integration time, but poorest spatial resolution, of all SELEX silicon
microstrip detectors, the HSDs serve chiefly to reject out-of-time tracks. Always, two
HSDs are housed in a single station. The average efficiency of the HSDs is 92%.

The remaining 8 silicon microstrip detectors of the beam spectrometer are grouped into
3 stations (BSSDs) mounted on a granite block inside a noise shielded cage (RF-cage).
These detectors have a resolution of 5.8µm and an average efficiency of 99.6%.

Incoming particles are identified by a transition radiation detector (BTRD) with
10 separate transition radiation detector modules (TRMs). Each module is build of a
radiator followed by 3 proportional chambers (PCs). A radiator consists of a stack of
200 polypropylene foils, each 17µm thick and spaced at 500µm. The PC gas is a
70% Xe, 30% CO2 mixture to optimize signal response time and to maximize absorption
of transition-radiation photons. Each chamber has a single anode readout amplifier.

Each BTRD PC gives a digital output when it detects an energy deposition above a fixed
threshold. The sum of all PCs detecting a signal above threshold is the TRD plane countk.
A typical probability spectrum of TRD plane counts, a BTRD signal spectrum, is shown
in Fig. 2. It shows the baryon and meson responses at low and high TRD plane counts,
respectively.

The signal components are separated by fitting the function:

pfit(k)=
2∑
i=1

κi

(
n

k

)
pki (1− pi)n−k︸ ︷︷ ︸

baryon signal

+
4∑
i=3

κi

(
n

k

)
pki (1− pi)n−k︸ ︷︷ ︸

meson signal

(1)

to the normalized BTRD signal spectrum. We used four binomials to account for
the four main beam components as well as to obtain an excellent description of the
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Fig. 1. Sections of the SELEX spectrometer involved in the measurement of total cross sections.

BTRD signal spectrum. In Eq. (1),pi and κi are fit-parameters with the constraints
1= κ1+ κ2+ κ3+ κ4 andp1, p2 < p3, p4 andn is the maximum possible TRD plane
count. The fit-parameterspi have the meaning of a PC response probability, when a meson
(light particle) or baryon (heavy particle) passes. Thus, we obtain from (1) the meson
fraction (κ3+ κ4) and the baryon fraction (κ1+ κ2) of the beam.

The target is followed by the vertex spectrometer, which consists of 22 silicon microstrip
detectors grouped into 6 stations (VSSD1,. . . , VSSD5 and HSD3). All VSSDs have
a resolution of 5.8µm. Except for one plane, which has a reduced efficiency of 68%,
all VSSDs have an average efficiency of 98.8%. At the end of the vertex spectrometer,
station HSD3 is mounted to the RF cage.

Although the total cross-section measurements presented in this article are based only
on detectors placed in the beam and the vertex spectrometer, we also use other parts of the
SELEX apparatus to compute corrections. Further detectors involved in the analysis are
situated in the M1 and the M2 spectrometer (see Fig. 1), which we describe briefly.

The M1 spectrometer starts at the center of the M1 magnet and ends at the center of
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Fig. 2. A typical BTRD signal spectrum obtained for 600GeV/c negatively charged secondaries.

the M2 magnet. For high resolution tracking of high energy particles in the central beam
region, sets of 6 silicon microstrip detectors (LASD1 and LASD2) are mounted to the faces
of the M1 and the M2 magnet. The LASD detectors have a resolution of 14.4µm, and an
average efficiency of 95.8%. For tracking outside the central beam region, 12 planes of
wire chambers (PWCs) are installed.

The M2 spectrometer starts at the center of the M2 magnet. To enhance the momentum
resolution for high energy particles, a third station of silicon microstrip detectors (LASD3)
is mounted to the end face of the M2 magnet. This station is followed by 14 PWCs that are
grouped into 7 stations (M2 PWC1,. . . , M2 PWC7).

2.3. The targets

To optimize the precision, total cross-section measurements are done with special
targets. Great care was taken in selecting and machining adequate target materials in
order to obtain best chemical and mechanical properties (see Table 1). All targets are thin;
multiple scattering, quantified byσθ of Molières’ formula is significantly lower than the
25µrad angular resolution provided by the beam and vertex spectrometer.

The carbon target is a stack of three pyrocarbon plates, each about 5 mm thick.
Pyrocarbon is composed of thin carbon layers accumulated on top of each other in a high-
temperature methane atmosphere. Compared to standard graphite it offers the advantages:
no open porosity, a density close to that of a graphite monocrystal and less than 1 ppm (parts
per million) non-carbon constituents. The beam faces of the carbon plates were milled with
a diamond-powder liquid and oriented such that the beam faces of the stack are parallel to
each other.
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Table 1
Specifics of the targets used in total cross-section measurements.L: target thickness,ρ∗: density,σθ :
expected spread in scattering angle due to multiple scattering calculated with Molières’ formula for
plab= 600GeV/c, Xcoll: collision length

Target Thickness Transverse Density σθ Xcoll
material L [mm] dimensions ρ∗ [µrad] [%]

z-direction x [mm] y [mm] [g/cm3]

beryllium 50.92 30.7 51.2 1.848 ± 0.002 8.3 16.86
carbon 15.46 30.0 30.0 2.199 ± 0.003 6.0 5.40
polyethylene 40.86 30.0 25.0 0.9291± 0.0008 6.3 6.66
copper 1.00 30.0 30.0 8.96 ± 0.009 5.7 1.05

The polyethylene target is build from a high-purity polyethylene granulate with less than
1000 ppm contaminants. Molten granulate was solidified in a vessel, where great care was
taken that no air bubbles penetrated. The material was then carefully machined to a target
block, and beam faces were flattened using a diamond pin.

For the beryllium and the copper target, standard industry products of high purity are
used.

2.4. Trigger and data acquisition

The SELEX trigger is a programmable four-stage trigger, designed to select events
involving decays of charm hadrons in a high-intensity beam environment. The first 3 levels:
T0, T1 and T2 are hardware triggers, whereas level T3 is an online software filter. In this
section, we describe only the trigger as programmed for total cross-section data-taking.

At data-taking, the trigger accepted all beam events defined by the minimum-bias
condition:

T0= S1∧S2∧S3∧V1∧V2∧ V3. (2)

S1, S2 and S3 are scintillation counters, and V1, V2 and V3 are veto counters to reject
beam halo (see Fig. 1). In definition (2), a T0-pulse indicates a particle traversing the beam
spectrometer in the direction of the target beam face. The transverse trigger acceptance is
constrained to the size of the hole in V2 (12.8 mm× 12.8 mm).

In order to keep the minimum bias condition provided by the definition of T0, no
information from detectors placed downstream of the experiment target influenced the
spectrometer readout. Thus, each T0-pulse passed the T1 trigger level unbiased, and
generated a T2-pulse, which started the spectrometer readout. The online software filter
(level T3) was not used for total cross-section data-taking. Pulses of all trigger levels were
counted by scalers for each spill, and saved in a trigger log file.

The SELEX trigger controlled readout and reset of the silicon-detector system, the
basic tool in our total cross-section measurements. Except for the HSDs, all other silicon
detectors use an SVX-I chip technology for data readout [2]. SVX chips are controlled by
a sequencer SRS (silicon readout sequencer) that interacts very closely with the trigger.
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First, it keeps the silicon detectors sensitive (for about 5µs effective integration time) and
starts the chip readout when receiving a T2-pulse. Second, the SRS resets the SVX-chips,
when a silicon-clear signal arrives. The silicon-clear signal is generated in the trigger logic
through:

Silicon clear= V5mult∨Cpulser∨ (T1∧ T2). (3)

Here, Cpulser are pulses from a gate generator running at a frequency of 20 kHz and
V5mult represents pulses generated, when the V5 veto counter (see Fig. 1) detects a high
multiplicity event. The condition(T1∧ T2) was irrelevant for total cross-section data.

2.5. Experimental conditions and recorded data

During the fixed-target run 1996/97, the TEVATRON was operated in 60 s cycles with a
spill time of 20 s. Data for total cross sections were taken during dedicated periods, with
optimized experimental conditions for this measurement.

By adjusting the flux of the 800 GeV/c proton beam, the T0-rate was optimized to run
the SELEX DAQ near, but safely below its capacity limit of 5×104 particles per spill. The
low hyperon-beam flux allowed a high silicon-clear rate, which resulted in a very low-noise
condition for the silicon-detector system and a low probability for out-of-time tracks.

During data-taking, the M1 magnet was switched off to obtain a 2.5 m field- and
material-free section, serving as fiducial region for precise reconstruction of hyperon
decays. Magnet M2 was operated with a transverse momentum kick ofpM2

T = 0.84 GeV/c.
At data-taking start, after mounting an experiment target in the RF-cage, an alignment

RUN was taken to account for eventual detector displacements caused during the target
installation. Then, the position of the experiment target was alternated every 30 min
between its out and in-beam position. Thus, almost equal amounts of data were taken
with full and empty target. A RUN, started after each target-position change, comprised
typically 106 events. A total of 9.8×107 minimum-bias events were recorded with negative
beam for the targets Be, C, Cu and CH2. With positive beam, 3.0× 107 minimum-bias
events were written using the targets Be and C.

3. The principle of the transmission method

In contrast to scattering experiments, whereσtot is deduced from a measured scattering
angle distribution, in a transmission experimentσtot is deduced from the number of
unscattered projectiles. Strictly, unscattered means zero scattering angle, but experimental
resolution and Coulomb scattering limit this to a determination of the number of projectiles
scattered by an angleθ , which is smaller than a maximum angle parameterθmax (F0(<

θmax)). Thus, one infers the number of unscattered particles by extrapolatingF0(< θmax)

to θmax= 0.
A standard transmission experiment consists of three elements: beam monitor, target,

and transmission counter. The number of projectiles hitting the target under full-target
(empty-target) conditionF0 (E0) is counted by the beam monitor placed in front of the
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target. A transmission counter, placed downstream of the target, counts the corresponding
number of projectilesFtr(<Ωi) (Etr(<Ωi)), leaving the target within the maximum solid
anglesΩ1, . . . ,ΩN . Recorded counts are combined to give a set of partial cross sections
σpart(<Ωi), defined as:

σpart(<Ωi)= 1

ρL
log

[
F0

Ftr(<Ωi)

Etr(<Ωi)

E0

]
with ρ = NAρ

∗

A
, (4)

whereρ is the density of scattering centers in the target,A is the atomic mass andNA is
Avogadro’s number.

Driving our choice of a transmission method is an important technical advantage of
Eq. (4). We do not need to know absolute efficiencies of the beam and the transmission
monitor. Their absolute values will cancel in (4) as long as they remain unchanged between
and during the full- and the empty-target RUNs (stability condition).

Taking into account the event correlations betweenF0 (E0) andFtr(<Ωi) (Etr(<Ωi)),
the statistical error of a partial cross section is given by:

δσpart(<Ωi)= 1

ρL

√
1

Ftr(<Ωi)
− 1

F0
+ 1

Etr(<Ωi)
− 1

E0
. (5)

In a thin target approximation (ρLσtot� 1), a partial cross sectionσpart(< Ωi) is related
to the total hadronic cross sectionσtot (see, e.g., [3]) by:

σtot= σpart(<Ωi)−
4π∫
Ωi

(
dσ

dΩ

)
C

dΩ −
4π∫
Ωi

(
dσ

dΩ

)
CN

dΩ

︸ ︷︷ ︸
Correction for C and CN scattering

+
Ωi∫
0

(
dσ

dΩ

)hadr

el
dΩ

︸ ︷︷ ︸
elastic term

+
Ωi∫
0

(
dσ

dΩ

)hadr

inel
dΩ

︸ ︷︷ ︸
inelastic term

. (6)

In equation (6),σtot is inferred by first correcting partial cross sections for Coulomb scatte-
ring (C) and the Coulomb hadronic interference (CN) and then extrapolating to zero solid
angle.

4. Data analysis

4.1. Data selection

In general, total cross-section data taken for a specific target were subject to varying
experimental conditions: thresholds on silicon microstrip detectors, high voltages for
trigger scintillators, and the inclination angle between primary proton beam and production
target. Therefore, data belonging to a cross-section measurement with a specific target were
divided into as many data sets as differing conditions had to be taken into account. This
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offered the possibility to calculate corrections and errors specifically for each experimental
condition in a later stage of the analysis. To preserve the stability condition mentioned in
section 3, a spill by spill data pre-selection was performed. Data of a spill or a whole run
were rejected:

(1) When the experimental conditions concerning the functionality of the spectrometer
(detector efficiencies, trigger performance and track reconstruction efficiencies)
suddenly changed.

(2) When it was not possible to synchronize raw data with information in the trigger log
file.

(3) When the BTRD showed instabilities or when the beam phase space lay outside the
BTRD fiducial region.

4.2. Event selection for normalization

The total cross-section determination is made by counting how many good beam tracks
are removed from the beam by interactions in the target. The normalization therefore
depends only on the number of good beam tracks, which are identified by a software
decision routine. This routine reconstructs tracks in the beam spectrometer using the HSD
and BSSD hit information. It preserves the minimum-bias condition for the selected data
by strictly avoiding event-selection rules that require information from detectors placed
downstream of the target. An event is accepted when it is possible to reconstruct a “norm
track” that satisfies the following criteria:

(1) Not more than a total of 150 hits in all BSSDs.
(2) At least 6 hits from BSSD planes along the track.
(3) At least one hit from an HSD plane along the track (HSD-tagging).
(4) A reduced track-fitχ2 below 3.
(5) An extrapolated origin of the track at the known transverse position of the primary

production target.
(6) Track intercept and slope parameters within the beam phase space accepted by

magnetic collimation.
(7) A transverse track position at the longitudinal position of the experimental target,

which is inside the trigger acceptance window and inside BTRD acceptance.
(8) A beam momentum assigned to the track, which is± 100 GeV/c around the center

of gravity value of the momentum spectrum.
Condition (3) rejects out-of-time tracks. The selection rules (4)–(6) remove events in which
hyperons decay before reaching the experiment target or react with detector material in the
beam spectrometer. Constraint (7) assures also that selected tracks point to the mid-part of
the experiment target face, where the best mechanical accuracy is obtained.

About 50% of the selected events had a norm track. From the resulting set of norm tracks
for full- and empty-target conditions, we establish classes of BTRD-tagged norm tracks.
This is done by introducing cuts on the BTRD information as indicated in Fig. 2 to separate
baryonic and mesonic norm tracks. We then determine the corresponding normalization
countsF0 andE0 by summing the norm tracks over the appropriate signal region.
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4.3. Transmission counting

When a norm track is found in the event, we try to reconstruct a single track in the vertex
spectrometer at small angle to the norm track. The single-track algorithm was efficient
and fast. It used hits of HSD3 to remove out-of-time tracks. With loose cuts on the track
parameters 98% of the norm tracks got assigned a track in the vertex spectrometer. Such
vertex tracks were finally accepted as “transmitted tracks”, when:

(1) There are at least 15 hits from VSSDs found within a track search corridor.
(2) The reduced track-fitχ2 is below 3.

For each transmitted track, the scattering angleθ between norm and transmitted track is
calculated. Following the idea of [4], a four-momentum transfert is assigned to the event
using the small angle approximationt ≈−p2

beamθ
2, wherepbeamis the momentum of the

incoming particle. Transmitted tracks are assigned tot bins of width 5.0× 10−4 GeV2/c2.
Note that we count transmitted tracks int-bins, rather than in bins of solid angleΩ as
discussed in Section 3. Summing the events in thet-bins from zero up to a maximumti
leads to sets of transmission countsFtr(< |ti |) andEtr(< |ti |).

4.4. Spectra of uncorrected partial cross sections

Using the countsF0, E0, Ftr(< |ti |), Etr(< |ti |) and the mechanical properties of the
targets, partial cross sectionsσpart(< |ti |) are calculated according to Eq. (4).

Fig. 3 shows some spectra for uncorrected partial cross sections. The strong rise of
σpart(< |ti |) for |t|< 0.002 GeV2/c2 is ascribed to multiple scattering in the target and the
finite angular resolution of≈ 25µrad. Differing levels of partial cross-section spectra for
beam particles of different kind indicate nicely the dependence of the total cross section on
the projectile type.

Fig. 3. Spectra of uncorrected partial cross sections resulting from beryllium target data sets.
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4.5. Corrections for non-hadronic effects

Partial cross sections were corrected for single Coulomb scattering (C) and for the
Coulomb–Nuclear interference effect (CN) evaluating the expression:

σ corr
part

(
< |ti |

)= σpart
(
< |ti |

)− ti∫
−∞

(
dσ

dt ′

)
C
dt ′

︸ ︷︷ ︸
C correction

−
ti∫

−∞

(
dσ

dt ′

)
CN

dt ′

︸ ︷︷ ︸
CN correction

. (7)

Applying the Coulomb correction, a change in the extrapolated cross section of not more
than 0.5% is observed for the light targets Be, C and CH2. For the Cu target a change of up
to 11% is noticed. The CN correction is roughly one order of magnitude smaller than the
Coulomb correction and has negligible effect on the extrapolated cross section.

4.6. The extrapolation method

As |t| approaches zero, the growth behavior of partial cross sections is governed ideally
by the elastic term in Eq. (6). At small|t|, hadronic coherent elastic scattering off nuclei
dominates. Thus, we obtain for the elastic term in Eq. (6), the expression:

t∫
0

(
dσ

dt ′

)hadr

el
dt ′ = σ 2

tot

16πBnuc

(
1+ ρ2)[1− eBnuct

]
, (8)

whereBnuc is the exponential slope observed in hadronic coherent elastic scattering off
nuclei. Therefore, we choose the functional form

f (α1, α2, t)= α1
[
1− eα2t

]
(9)

to describe the variation of partial cross sections with respect to|ti |.
The parametersα1 and α2 are determined in fitting function (9) to differences in

corrected partial cross sections of adjacentt-bins in the range oftmin =−0.007 GeV2/c2

to tmax= −0.03 GeV2/c2. The limits tmax and tmin account for experimental sensitivity
to hadronic coherent elastic scattering off nuclei. Their derivation is described in
Section 4.6.1.

Starting from the partial cross sectionσpart(< |tmin|), the total cross sectionσtot is
determined by extrapolating thet-variation of the partial cross sections fromtmin to t = 0
using the expression:

σtot= σpart
(
< |tmin|

)+ α1
[
1− eα2tmin

]
. (10)

4.6.1. The limitstmin andtmax and the sensitivity of the SELEX experiment to coherent
hadronic elastic scattering off nuclei

In measurements of hadron–nucleus cross sections, it is essential that the experiment
is sensitive to hadronic coherent elastic scattering off nuclei. Further, one must be able to
distinguish coherent from incoherent scattering processes off nucleons. In scattering off
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nuclei, the nucleus can break up when the energy transfer exceeds the binding energy of
its nucleons. This leads to a contribution of incoherent scattering off nucleons for|t| >
0.015 GeV2/c2. In that case, the hadronic differential elastic cross section, entering the
elastic term of Eq. (6), contains two parts:(

dσ

dt

)hadr

el
= σ

2
tot(hA)

16π

(
1+ ρ′2)eBnuct︸ ︷︷ ︸

coherent scattering

+ N(A)
σ 2

tot(hN)

16π
eBNt︸ ︷︷ ︸

incoherent scattering

. (11)

There is a term for coherent elastic scattering off the nucleus, in whichσtot(hA) is the total
nuclear cross section, and a term for incoherent scattering off nucleons, in whichσtot(hN)
is the corresponding hadron–nucleon cross section.BN is the slope parameter for scattering
off nucleons, andN(A) is a factor describing the effective number of nucleons taking part
in the incoherent process for target nuclei of massA (see [5]).

The contribution of the incoherent term decreases the growth behavior of the elastic
term in (6) becauseBN is typically one or more orders of magnitude smaller than
Bnuc. An extrapolation based on partial cross sections, selected in a|t|-range far above
0.015 GeV2/c2 would lead to a systematically lowered cross-section result, because a
fraction of the elastic processes would be ignored. Consequently, we looked for at-interval
[tmin; tmax] to select partial cross sections where their growth is dominated byBnuc.

The sensitivity of the SELEX spectrometer to hadronic coherent elastic scattering off
nuclei was verified by looking at background-subtracted differential scattering spectra.
These spectra, not acceptance-corrected, are defined by:

S(t)= 1

ρLΓ

[
F(t)

F0
− E(t)

E0

]
. (12)

Here,Γ is the width of thet-bins.F(t) (E(t)) is the number of scattering events found in
the full-target (empty-target) data sets that fall into the interval [|t| −Γ/2; |t| + Γ/2].

Fig. 4 shows a typical example of anS(t) spectrum obtained for6− scattering off carbon
nuclei. The spectrum shows three regions governed by apparently different exponential
slopes, which can be explained by contributions of Coulomb scattering, coherent elastic
scattering and incoherent elastic scattering comparable to measurements described in [5].

Determinations of the slope parametersBnuc andBN in S(t) spectra showed the expected
order of magnitude for all targets, andBnuc agreed quite well with data presented in [6].
Furthermore, the magnitude ofBnuc is also reflected by the size of parameterα2 in Eq. (10),
when applying the extrapolation.

From such studies, we choosetmax= −0.03 GeV2/c2, as this value is well inside the
region dominated by coherent hadronic elastic scattering off nuclei for all targets. The
contribution of the integrated incoherent term at thistmax is much lower than the integrated
coherent term.

To avoid large multiple-scattering corrections, we chosetmin of−0.007 GeV2/c2, so that
the angular resolution has negligible effect on the extrapolated total cross section.
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Fig. 4. Differential scattering spectrum obtained for6− carbon reactions, showing the Coulomb, the
coherent and the incoherent region.

5. Corrections

5.1. Trigger-rate corrections

The trigger rate influences the reconstruction efficiency for tracks and thus alters the
transmission ratiosTfull andTempty per spill. Fig. 5 shows an instructive example of this
effect.

Due to the rate effect, our extrapolated total cross-section experiences a shift∆T0 when
the average T0-counts, calculated for all empty and all full-target spills separately, differ.

To determine the shift∆T0 we calculate full and empty-target transmission ratios per
spill for |t|< 0.01 GeV2/c2 and describe their rate dependency by fitting to the expression

Tfit(T0)= β̃1,k + β̃2,k T0k. (13)

We have studied the effect of different powers (k = 2,3,4) to estimate systematic errors.
We choose the average T0-rateT0, comprising all full and all empty-target spills as

reference rate for the rate correction. Thus, transmission ratios per spill are corrected by
evaluating:

T T0
j,k︸︷︷︸

corrected

= Tj
(|t|< 0.01 GeV2/c2)︸ ︷︷ ︸

uncorrected

+ β̃2,k
(
T0k − T0kj

)︸ ︷︷ ︸
correction

, (14)

which results in a set of corrected transmission ratiosT T0
j,k . Fit-function dependent offsets

∆T0,k are deduced by:
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Fig. 5. Dependency of full-target transmission ratios on the T0-count.

∆T0,k = σT0,k
part

(
< 0.01 GeV2/c2)− σpart

(
< 0.01 GeV2/c2) (15)

and averaged to a mean offset∆T0. Total cross sections are then corrected by:

σT0
tot = σtot+∆T0. (16)

Averaged sizes of the rate correction are presented in Table 2. We want to mention that
the copper data were taken at higher rate, where the slope of function (13) is steeper. This,
together with the small thickness of the copper target, causes large corrections.

5.2. Corrections for beam contaminants

A transition radiation detector does not make an exact particle identification because
of statistical fluctuations in X-ray generation and background from various processes.
Therefore, when selecting the baryon or the meson component of the hyperon beam by
applying cuts on the BTRD plane count, we need to account for:

(1) The meson (baryon) contamination in the baryon (meson) sample and the effect on
the total cross section.

(2) The baryon (meson) contamination in a specific sample for a measurement with
protons or6− (π−) and the effect on the total cross section.

Once the contaminant fractionε is determined, the experimental cross sectionσ
exp
tot can be

corrected by the term∆cont using:

σ
(1)
tot = σ exp

tot +
1

ρL
log
[
1+ ε(2)(e−ρL(σ (2)tot −σ (1)tot ) − 1

)]
︸ ︷︷ ︸

Correction∆cont

. (17)

This formula was derived in [7] for a two component beam having a contamination fraction
ε(2).

5.2.1. Beam contaminant determination
In a first step, total cross sections resulting from data sets are corrected for the fraction

of mesons (baryons) in a baryon sample (meson sample) using (17). Therefore, we fit
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Table 2
Average sizes of systematic errors and corrections. For explanation of symbols see text of Sections 5.1, 5.2 and 6.1

Systematic errors Corrections

Cross plab δextr δBTRD δfluc δrate δcont δtgt ∆T0 ∆cont
section [GeV/c] [mb] [mb] [mb] [mb] [mb] [mb] [mb] [mb]

σtot(pBe) 536 0.91 0.70 0.25 0.35 0.06 0.30 −1.24 0.62
σtot(6

−Be) 638 1.20 0.49 0.04 0.10 0.07 0.27 −0.93 0.65
σtot(π

−Be) 638 0.50 0.17 0.22 0.05 0.61 0.21 −0.79 1.00
σtot(pC) 457 0.90 2.11 0.54 0.38 0.09 0.47 11.22 0.91
σtot(pC) 490 1.81 1.53 0.68 1.15 0.10 0.47 −3.87 0.86
σtot(6

−C) 598 1.57 1.92 1.21 1.18 0.13 0.43 −6.42 1.12
σtot(π

−C) 591 1.30 1.40 1.50 0.95 0.63 0.33 −3.11 1.03
σtot(6

−CH2) 589 2.10 2.55 0.69 0.16 0.16 0.30 3.67 1.44
σtot(π

−CH2) 585 1.26 0.96 0.54 0.12 0.75 0.23 2.90 1.21
σtot(6

−Cu) 609 163 41 76 41 0.33 1.23 −754 3.1
σtot(π

−Cu) 608 85 52 78 36 2.99 1.03 −649 4.7
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function (1) to normalized BTRD signal spectra, which are recorded for norm tracks. For
negative beam these fits yield an average baryon fraction (κ1+ κ2) of (47.5± 1.6)% and
an average meson fraction (κ3 + κ4) of (52.5± 1.6)%. For positive beam, we measure
a baryon fraction of (91.9± 1.4)% and a meson fraction of (8.1± 1.4)%. To deduce the
meson (baryon) contaminant fractionε, we sum the meson (baryon) component of (1) over
the TRD plane count region shown in Fig. 2. Further, the differenceσ

(2)
tot −σ (1)tot is calculated

in taking rate corrected extrapolated cross-section results obtained for the meson and the
baryon beam component.

In a second step, we account for the main contaminant disturbing a specific measurement
for protons,6− andπ−. According to the expected hyperon-beamcomposition we correct:

(1) For the effect of4− particles in the baryon sample, when measuring6−A cross
sections.

(2) For the effect of6+ particles in the baryon sample, when measuring pA cross
sections.

(3) For the effect of K− particles in the meson sample, when measuringπ−A cross
sections.

For case (1), we measure the overall fraction of4− particles in each negative-beam data
sample and for case (2) we measure the overall fraction of6+ particles in each positive-
beam data sample. Therefore, we count the decays6− → n + π−, 4− →30+ π− and
6+ → n + π+, reconstructed for a known number of norm tracks within the field-free
region of the M1 magnet. Fig. 6 shows some hyperon-mass spectra obtained by the decay
reconstruction.

Particle decay counts are corrected for geometrical acceptance, branching ratio and
decay losses after the target, to yield the overall hyperon contaminant fractions. Here, we
find an overall4− fraction of (41.18±0.06)%, and an overall6+ fraction of (2.7±0.7)%.
These fractions are then divided by the baryon fraction (κ1+ κ2), known from the first step

Fig. 6. Hyperon-mass spectra obtained from reconstructed6−,4− and6+ decays. The spectra are
fit to a Gaussian plus a linear background function.mX is the mean mass found for hyperon X and
σm is the corresponding mass resolution resulting from the fit.
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procedure to yield the hyperon contaminant fractionε of the baryon component.
Case (3) requires knowledge of the number of K− particles in the meson sample.

The SELEX spectrometer cannot differentiate between 600 GeV/c π− and K− particles.
We estimate the overall fraction of K− particles in the sample using particle-flux
parameterizations of [1]. This results in an overall K− fraction of (1.6± 1.0)%, which
divided by the meson fraction (κ3+ κ4) yields the K− contaminant fraction of the meson
component.

Calculating the contaminant correction using Eq. (17) requires knowledge of the total
cross sectionsσtot(4

−A), σtot(6
+A) andσtot(K−A). As data on these cross sections are

either scarce or do not exist, we estimate them using approximations like:

σtot(4
−A)≈ σtot(4

−p)
σtot(pA)

σtot(pp)
, (18)

and neglect weak energy dependencies. Necessary data for hadron–nucleon cross sections
are taken from [4,8] and data for pA-cross sections are taken from [9].

Averaged sizes of the contaminant correction including both correction steps are shown
in Table 2.

6. Results for hadron–nucleus cross sections

Total cross sections as well as their statistical and systematic errors were determined
for each dataset separately. In order to calculate average total cross sections and average
systematic errors, we use weighted means. We present the error contributions, the data
averaging method and the final results.

6.1. Measurement errors

6.1.1. The statistical error
The dominant error contribution is the statistical error, which is governed by the

statistical uncertainty of the partial cross sectionσpart(< |tmin|), used in the extrapolation.
Further statistical error contributions, originating in other terms of the error propagated
formula (10), are negligible. The statistical errors for each measurement are presented in
Table 3.

6.1.2. Systematic errors
In this section we briefly describe the systematic errors found during the data analysis.

Table 2 gives an overview of the average sizes of these errors as well as the rate correction
and the contaminant correction.

Systematic error of the extrapolationδextr

A significant systematic error contribution is the choice oftmin for extrapolation
of partial cross sections. This error is based on the RMS-spread (root mean square)
of the extrapolated total cross section whentmin is varied from−0.004 GeV2/c2 to
−0.01 GeV2/c2.
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Table 3
Results for nuclear total cross sections. For explanation of symbols see text of Section 6.2

Cross plab σ tot δstatσ tot δsystσ tot δtotσ tot
section [GeV/c] [mb] [mb] [mb] [mb]

σtot(pBe) 536 268.6 ±0.7 ±1.3 ±1.5
σtot(6

−Be) 638 249.1 ±0.9 ±1.3 ±1.6
σtot(π

−Be) 638 188.7 ±0.8 ±0.9 ±1.2
σtot(pC) 457 333.6 ±3.1 ±2.4 ±3.9
σtot(pC) 490 335.4 ±3.6 ±2.9 ±4.6
σtot(6

−C) 598 308.9 ±2.1 ±3.8 ±4.3
σtot(π

−C) 591 234.1 ±1.5 ±3.1 ±3.5
σtot(6

−CH2) 589 376.4 ±2.0 ±4.1 ±4.5
σtot(π

−CH2) 585 286.1 ±1.3 ±2.0 ±2.4
σtot(6

−Cu) 609 1232 ±133 ±192 ±233
σtot(π

−Cu) 608 1032 ±77 ±162 ±179

Cut on the BTRD signal spectrumδBTRD

Although contaminant and rate corrections are applied for each specific cut on the BTRD
signal spectrum, we still observe a variation of the cross section when varying the cut on the
TRD plane count by±1 unit around its nominal value. Therefore, we calculate a systematic
error, which is the maximum spread in the cross sections found in the cut variation.

Spill to spill fluctuationsδfluc

Here, we compare the statistical error inσpart(< 0.01 GeV2/c2), which we calculate
from (5) with the error inσpart(< 0.01 GeV2/c2) calculated from the experimentally
observed RMS-spread of rate corrected transmission ratios per spill. The difference in these
errors accounts for remaining non statistical spill to spill fluctuations.

Systematic error of the rate correctionδrate

This error takes into account the error arising from different functional attempts to
describe the rate effect presented in Section 5.1. Its value is given by the maximum spread
of the∆T0,k with respect to their average value∆T0.

Systematic error of the contaminant correctionδcont

This systematic error accounts for the uncertainty in the fit parameters of the four-fold
binomial distribution (1) and for the uncertainty in the contaminant fractions for6+, 4−
and K−.

Uncertainty of the target densityδtgt

The target densities were measured several times, using a pycnometer and a buoyancy
method. Laboratory studies showed systematic discrepancies in the density measurement,
which are included in the density errors shown in Table 1. These errors are propagated to
an error contribution to the total cross sections, which are on a 0.1% level.
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6.2. Data-averaging and results on hadron–nucleus cross sections

6.2.1. The average total cross section
Total cross-section resultsσtot,i , obtained fromi = 1, . . . ,N data sets, are combined to

an average total cross sectionσ tot with a statistical errorδstatσ tot and an average systematic
errorδsystσ tot. The results are shown in Table 3.

We average the total cross-sectionsσtot,i that correspond to a specific measurement using
the weighted mean:

σ tot=
∑N
i=1ωi σtot,i∑N
i=1ωi

, ωi = 1

(δstat
i )2+∑M

j=1(δ
syst
j,i )

2
. (19)

The weightωi includes the statistical error (δstat
i ) of data set i and allj = 1, . . . ,M

systematic errorsδsyst
j,i described in Sections 6.1.1 and 6.1.2.

The statistical error is supposed to decrease when adding more data to the evaluation.
We calculate the statistical error in the averaged total cross section by:

δstatσ tot=
√√√√1

/ N∑
i=1

1

(δstat
i )2

. (20)

In assigning a systematic error to an average total cross sectionσ tot we assume that the
systematic errors of the single measurements can be just averaged. Therefore, we quote as
average systematic error:

δsystσ tot=

√√√√√∑N
i=1ωi

[∑M
j=1(δ

syst
j,i )

2
]

∑N
i=1ωi

, (21)

using the weightsωi defined in (19).
Further, we quote a total errorδtotσ tot of the average total cross section, which is

calculated from:

δtotσ tot=
√(
δstatσ tot

)2+ (δsystσ tot
)2
. (22)

6.3. Comparison to existing data on hadron–nucleus total cross sections

A literature survey showed that experimental data on hadron–nucleus total cross sections
for charged projectiles at high energies are extremely scarce. Information for proton–
nucleus andπ−–nucleus total cross sections is only provided by the Refs. [5,6,9] and
displayed together with our results in the Figs. 7, 8, 9, 10 and 11. No data were found for
6−–nucleus total cross sections.

6.3.1. Comparison of nucleon–nucleus total cross sections
In Figs. 7 and 8 we display a compilation of proton–nucleus and neutron–nucleus cross

sections extracted from [7,10–12] together with our results. As can be seen, the proton–
nucleus cross sections of [5] atplab= 20 GeV/c and the neutron–nucleus cross sections are
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Fig. 7. Summary of experiment data onσtot(nBe) from [7,10–12] and onσtot(pBe) from [5] and
SELEX (the colour version of this figure can be seen on the Nuclear Physics Electronic website:
http://www.elsevier.nl/locate/npe). Overlaid are results from the model calculation (see Section 7).

similar. For this reason we assume that differences between neutron–nucleus and proton–
nucleus cross sections are negligibly small above 20 GeV/c. This allows a comparison of
our proton–nucleus cross sections with corresponding neutron–nucleus cross-section data
available at much higher energy.

Comparing our results with neutron–nucleus cross sections at 131−273 GeV/c (data
of [7]) shows that our measurements follow the trend of these data points. Averaging the
neutron–beryllium total cross sections in this momentum range results in 271.0± 0.6 mb,
which is close to our proton–beryllium cross section at 536 GeV/c of 268.6± 1.5 mb.
A similar calculation for the neutron–carbon cross section gives a mean value of 331.0±
0.8 mb, which is close to our measurements of the proton–carbon cross section around
457 GeV/c of 333.6± 3.9 mb.

6.4. Comparison ofπ−–nucleus total cross sections

High-energy data forσtot(π
−Be), σtot(π

−C) and σtot(π
−Cu) that were determined

using a transmission technique are presented in the thesis of A. Schiz [9]. Unfortunately,
the statistical errors quoted for theπ−A total cross-sections are quite large and mask other
corrections. Luckily, on the basis of [9], a publication on hadron–nucleus elastic scattering
appeared [6], where fits to elasticπ−–nucleus scattering data are performed. We extracted
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Fig. 8. Summary of experiment data onσtot(nC) from [7,10–12] and onσtot(pC) from [5] and
SELEX (the colour version of this figure can be seen on the Nuclear Physics Electronic website:
http://www.elsevier.nl/locate/npe). Overlaid are results from the model calculation (see Section 7).

π−–nucleus total cross-sections from these fits and present them in the Figs. 9, 10 and 11.
The Figs. 9, 10 and 11 show that the SELEX results forπ−Be,π−C andπ−Cu cross

sections are quite comparable to the data from [6]. However, more precise data are needed
to do a detailed comparison.

7. Model description of hadron–nucleus cross sections

In this section, we introduce a model calculation for hadron–nucleus cross sections and
show how well it describes the data.

7.0.1. The Glauber model and the inelastic screening correction
As shown in [7], the Glauber model [13,14] including an inelastic screening correc-

tion [15], is very precise in describing neutron–nucleus cross sections at high energy. The
Glauber model accounts for the elastic screening effect in nuclei via multiple elastic scat-
tering between the incident hadron h and the nucleons N. As mentioned in [7], nuclear
total cross sections calculated by the Glauber model exceed experimental data. This is
compensated by taking into account the inelastic screening correction described in [15].
It accounts for inelastic reactions h+ N→ N+ X, which produce an inelastic screening
effect. Consequently, a model cross sectionσmod

tot comprises two parts:
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Fig. 10. Summary of experiment data onσtot(π
−C) from [6] and SELEX (the colour version of

this figure can be seen on the Nuclear Physics Electronic website: http://www.elsevier.nl/locate/npe).
Overlaid are results from the model calculation (see Section 7).
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Fig. 11. Results forσtot(π
−Cu) from [6] and SELEX.

σmod
tot

(
A,σtot(hN)

)= σGla
tot

(
A,σtot(hN)

)−1σKar. (23)

These are a Glauber model cross sectionσGla
tot (A,σtot(hN)) and an inelastic screening

correction1σKar.

The Glauber model cross section
According to [14],σGla

tot (A,σtot(hN)) can be calculated by:

σGla
tot (hA)= 4π <e

{ ∞∫
0

1−
[
1− (1− iρ′hN)

2
σtot(hN)T (b)

]A

bdb

}
,

T (b)= 1

2π

∞∫
0

J0(qb)e−BhN
q2

2 S(q)q dq, S(q)= 4π

q

∞∫
0

r sin(qr)ρ̃(r)dr. (24)

Hereρ′hN is the real to the imaginary part of the elastic scattering amplitude in the forward
direction observed in hadron–nucleon elastic scattering andb is the impact parameter.BhN

is the hadronic slope in hadron–nucleon elastic scattering andJ0 is a Bessel function of
order zero. The nuclear densityρ̃(r) is normalized as:

4π

∞∫
0

ρ̃(r)r2 dr = 1. (25)

The inelastic screening correction
The inelastic screening correction1σKar, originally formulated in [15] for proton–

nucleus reactions, is generalized by:

1σKar= 4π

∞∫
0

(
√
s−mp)

2∫
(mp+mπ)2

(
d2σ

dt dM2

)
t=0

e−
1
2σtot(hN)AT̃(b)

∣∣F(qL, Eb )
∣∣2dM2 d2b,
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T̃(Eb )=
+∞∫
−∞

ρ̃(Eb, z)dz, F (qL, b)=A
+∞∫
−∞

ρ̃(b, z)eiqLz dz,

qL =
(
M2−m2

p

)mp

s
. (26)

Heremp is the proton mass andmπ is the pion mass. The double differential cross section
d2σ/dt dM2 describes the inelastic reaction h+N→N+X of the incident hadron h with
a nucleon N, where the resulting final state X has an invariant mass squared ofM2.

7.0.2. Input parameters for the total cross-section model
Model input parameters areσtot(hN), ρ′hN,BhN, ρ̃(r) and(d2σ/dt dM2)|t=0. All of them

are extracted from experimental data withN = p.

Input parameterσtot(hN)
Model calculations require values ofσtot(hN) for a wide range of center of mass energies√
s. We fit data on pp andπ−p total cross sections from [8] to a smooth function:

σtot(hp, s)= a0

sa1
+ a2 log2(s). (27)

The fit-parametersai , their errors and the validity range of each parameterization, are
shown in Table 4. The result of each parameterization is in mb, when usings in GeV2.

Table 4
Fit-parameters and validity range of the total cross-section parameterizations

Reaction a0 a1 a2 Momentum range

pp 49.51± 0.26 0.097± 0.002 0.314± 0.004 10. . .3000 GeV/c

π−p 55.2± 7.2 0.255± 0.032 0.346± 0.020 80. . .380 GeV/c

Input parameterρ′hp
We parameterizeρ′pp(plab) andρ′

π−p(plab), using data onρ′pp from [16–28] and data

on ρ′
π−p from [16,21,29,30], assuming thatρ′ reaches a constant value whenplab goes to

infinity. Our fits are

ρ′pp(plab)=+ 6.8

p0.742
lab

− 6.6

p0.599
lab

+ 0.124

for 0.8 GeV/c < plab< 2100 GeV/c, (28)

ρ′
π−p(plab)=− 0.92

p0.54
lab

+ 0.54

for 8.0 GeV/c < plab< 345 GeV/c, (29)

whereplab is in GeV/c. Fig. 12 displays these fit-functions together with all data points
included in the fit.
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Fig. 12. Our parameterizations forρ′pp(plab) andρ′
π−p(plab) together with experimental data from

[16–28].

Input parameterBhp

For the hadronic slope parametersBpp andBπ−p we take the parameterizations presented
in [31]:

Bpp(plab)=


Bpp,1= 11.13− 6.21√

plab
+ 0.30 log{plab}, q2= 0.02,

Bpp,2= 9.26− 4.94√
plab
+ 0.28 log{plab}, q2= 0.20,

Bpp,3= 9.67− 7.51√
plab
+ 0.10 log{plab}, q2= 0.40,

(30)

Bπp(plab)=


Bπp,1= 9.11+ 0.65√

plab
+ 0.29 log{plab}, q2= 0.02,

Bπp,2= 6.95+ 0.65√
plab
+ 0.27 log{plab}, q2= 0.20,

Bπp,3= 6.13+ 0.65√
plab
+ 0.25 log{plab}, q2= 0.40.

(31)

Here, q2 is in units of GeV2/c2. These parameterizations are linearly interpolated to
account for the dependency ofBhN on bothplab andq2.

Input parameter(d2σ/dt dM2)|t=0

To calculate the inelastic screening correction1σKar, we use the parameterization of
(d2σ/dt dM2)|t=0 for the process p+ p→ p+X, given in [7]:

(
d2σ

dt dM2

)
t=0
=


26.470(M2− 1.17)− 35.969(M2− 1.17)2

+18.470(M2− 1.17)3− 4.143(M2− 1.17)4

+0.341(M2− 1.17)5 for 1.17<M2< 5 GeV2/c2,

4.4/M2 forM2> 5 GeV2/c2.

(32)

In addition, we also use more recent parameterizations for(d2σ/dt dM2)|t=0 to describe
the processes p+p→ p+X andπ+p→ p+X, which are presented in [32] and are based
on calculations of triple-Regge diagrams in [33]. ForM2 6M2

0, these parameterizations
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Fig. 13. The parameterizations (32) and (33) evaluated forplab= 600GeV/c.

consist of a background term and a sum of non-energy-dependent resonance terms. In case
M2 > M2

0 the parameterizations consist of a sum over contributions from triple-Regge
diagrams:

(
d2σ

dt dM2

)
t=0
=


∑
i

ai
(M2−M2

i )
2+Γi +

cf (M
2−M2

min)

(M2−M2
min)

2+df , M26M2
0,∑

k Vk

(
M2

s

)αk(0)−βk(0)−β ′k(0) 1
s

2−αk(0) , M2>M2
0 .

(33)

Instead of displaying the large number of parameters for Eq. (33), which are taken from
calculations in [33], we display the parameterizations (32) and (33) in Fig. 13.

Compared to (33), parameterization (32) has nos-dependence. Further, parameteriza-
tion (33) is not continuous and the resonance sizes are quite different for p+ p→ p+X.

Input parameterρ̃(r)
In the calculations, we use density distributionsρ̃(r) that are based on the harmonic-

oscillator model:

ρ̃(r)= ρ0

[
1+ α̃

(
r

arad

)2]
e
−
(

r
arad

)2

. (34)

This offers the possibility to calculate some integrals in an analytic way and gives a
better description of the (charge-) density distribution for light nuclei than a standard two-
parameter Fermi parameterization. As reported in [7], we also find that the model does not
provide a good description of neutron–nucleus total cross sections if one uses bothα̃ and
arad from electron-scattering data [34]. Therefore, we usedα̃ values from [34] and adjusted
the radius parameterarad, such that the model cross sectionσmod

tot (NA, arad) gives a best
description of nA-cross section data in the momentum range 10−273 GeV/c. Adjusting
of arad was done for each nucleus and for each of the parameterizations (32) and (33)
separately. Table 5 gives a summary of the density parameters.
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Table 5
Parameters of the density distributioñρ(r) from electron–nucleus elastic scattering [34] and the
radius parameters resulting from a fit ofσmod

tot (arad,plab) to nA cross-section data in the momentum
range 10−273GeV/c

Data from [34] Fit result using (32) Fit result using (33)
Nucleus e–A scattering inσmod

tot (NA, arad) in σmod
tot (NA, arad)

α̃ arad [fm] arad [fm] arad [fm]

beryllium 0.611 1.791 1.89981 2.02914
carbon 1.067 1.687 1.79247 1.89277

7.0.3. Results of the model calculations

Results for nucleon–nucleus model cross sections
To show the quality of our model calculation after adjusting the nuclear density para-

meterarad, we evaluated the total cross sectionsσmod
tot (Be, σtot(pp)) andσmod

tot (C, σtot(pp))
using function (32). This was done for data onσtot(pp) taken from [8] and for values on
σtot(pp) resulting from our fit (27). The calculations were done at many different values
of plab to show the behavior over the entire high momentum region. Scatter in the model
calculations (observed when experimental data onσtot(pp) are used) demonstrate the sen-
sitivity of the model to small changes inσtot(pp).

Summaries of calculation and data are shown in Figs. 7 and 8. They show that the
calculations reflect quite well the cross-section data forplab > 5 GeV/c. The nBe data
of [7] in the range 131−273 GeV/c suggest a rise of the nBe cross section with energy
that is also indicated by the model calculation. Our data point does not show any rise for
pBe. In the case of nC cross sections our measurements join both data at lower energy and
calculation very nicely.

Results forπ−–nucleus model cross sections
We evaluated the cross sectionsσmod

tot (Be, σtot(π
−p)) and σmod

tot (C, σtot(π
−p)) using

function (33) and the corresponding nuclear density parameterarad, which was determined
by a fit of the model cross section to neutron–nucleus data. All further input parameters
are specific forπ−p-reactions. The calculations were done for data onσtot(π

−p) taken
from [8] and for values from function (27).

Results are shown in Figs. 9 and 10 together with data forπ−–nucleus total cross
sections from [6] and the SELEX experiment. The figures show that the calculations match
our measurements quite well and agree within errors with lower-energy data from [6].

8. Results for hadron–nucleon cross sections

The hadron–nucleon cross sectionsσtot(6
−N) andσtot(π

−N) were first determined by
a CH2–C method. As this method provides hadron–nucleon cross sections only with a
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precision on the order of 10%, we improved the precision using a method which takes
advantage of the more precise hadron–nucleus cross-section ratios.

8.1. Hadron–nucleon cross sections using a CH2–C difference method

The hadron–nucleon cross sectionsσtot(6
−N) and σtot(π

−N) can be deduced from
corresponding cross sections measured on carbon and polyethylene by:

σtot(hN)= 1

2

[
σtot(hCH2)− σtot(hC)

]
, (35)

where h denotes the incident hadron. Results obtained by this method are presented in
Table 9. The quoted errors are calculated from the total errors in the hadron–nucleus cross
sections given in Table 3.

8.2. Hadron–nucleon cross sections deduced from hadron–nucleus cross sections

In a second approach, we deduce hadron–nucleon cross sections from ratios of measured
hadron–nucleus cross sections. To motivate the method, we first derive empirical relations
between hadron–nucleon and hadron–nucleus cross section ratios, which we then refine
using the model calculation described in Section 7.

To derive empirical relations between hadron–nucleon and hadron–nucleus cross section
ratios we use data on hadron–nucleon cross sections around 137 GeV/c from [4,8], and
obtain the hadron–nucleon cross-section ratios:

σtot(π
−p)

σtot(pp)
≈ 0.635± 0.006,

σtot(6
−p)

σtot(pp)
≈ 0.901± 0.012. (36)

Next, we build nuclear cross-section ratios using our measurements for the6−A, π−A
and pA cross sections from Table 3.

Our pA cross sections were measured at lower laboratory momentum than the
corresponding6−A or π−A cross sections. To correct for this, we scale the pA cross
sections by a factorkscalebefore building the cross-section ratio. The scale factor takes into
account the growth of the pA cross section from the laboratory momentum where it was
measured to the larger laboratory momentum of the corresponding6−A or π−A cross
section. Scaling factors are calculated using the model described in Section 7. They are
displayed together with the nuclear cross-section ratios in Table 6.

The nuclear ratios show that theπ−A cross sections are about 0.7 times and the6−A
cross sections are about 0.92 times as large as the pA cross section.

To get a first relation between hadron–nucleon and hadron–nucleus cross sections, we
ignore the weak energy dependence of the cross-section ratios. Calculating the ratios of
hadron–nucleon to hadron–nucleus cross-section ratios using the above data gives the
results presented in Table 7.

The double ratios show a small but significant deviation from one especially for ratios
involving π− cross sections. From this empirical observation it follows that a hadron–
nucleon cross sectionσtot(hN) can be approximately derived from the pp cross section and
a hadron–nucleus cross-section ratio using the relation:
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Table 6
Nuclear cross-section ratios. The pA-cross section is scaled bykscaleto account for the discrepancy
in laboratory momenta of the cross sections used in the ratio

Scaled cross-section ratio plab[GeV/c] kscale

σtot(π
−Be)/σtot(pBe) = 0.698± 0.006 640 1.0058

σtot(π
−C)/σtot(pC) = 0.695± 0.014 590 1.0036

σtot(6
−Be)/σtot(pBe)= 0.922± 0.008 640 1.0058

σtot(6
−C)/σtot(pC) = 0.917± 0.018 590 1.0040

Table 7
Ratios of the hadronic cross-section ratios at 137 GeV/c and the nuclear cross-section ratios around
600 GeV/c

Double ratio Result Double ratio Result

σtot(6
−p)/σtot(pp)

σtot(6−Be)/σtot(pBe) 0.977± 0.016 σtot(π
−p)/σtot(pp)

σtot(π−Be)/σtot(pBe) 0.910± 0.012

σtot(6
−p)/σtot(pp)

σtot(6−C)/σtot(pC) 0.983± 0.023 σtot(π
−p)/σtot(pp)

σtot(π−C)/σtot(pC) 0.915± 0.020

average (κ) 0.980± 0.014 average (κ) 0.913± 0.012

σtot(hN)≈ κ × σtot(pp)×
(
σtot(hA)

σtot(pA)

)
, (37)

whereκ is a parameter specific for the cross section ratio (compare with Table 7). If we
setκ = 1 for simplicity, we see that the precision of (37) is about 10%. The precision is
improved by adequate adjusting ofκ .

Unfortunately we cannot empirically deriveκ from experimental cross sections for
laboratory momenta around 600 GeV/c as necessary cross-section data is missing. Thus,
as we want to deduce hadron–nucleon cross sections from nuclear cross-section ratios with
best precision, we improve the relation between hadron–nucleon and hadron–nucleus cross
sections using the total cross-section model that was introduced in Section 7.

The idea of the model-based ratio method is the following: Rewriting (37) yields the
following relation between the experimental hadron–nucleus and the model based hadron–
nucleus cross-section ratios.

σ tot(hA)

σ tot(pA)︸ ︷︷ ︸
experimental

= σ
mod
tot (A, σtot(hN))

σmod
tot (A, σtot(pN))︸ ︷︷ ︸

theory+σtot-data

. (38)

Taking the ratio of model based quantities reduces the effect of uncertainties in the cross-
section model. Because precise data forσtot(pp) is available over a large energy range,
it is convenient to use proton–nucleus cross sections in the denominator. The energy
dependence of the pp cross section is known at SELEX energies. The model is adjusted
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to describe NA cross sections forplab> 10 GeV/c. Therefore the energy dependence of
σtot(hp), which we want to determine, is determined by the known energy dependence of
the pp cross section.

To deduce the cross sectionσtot(hN) from the measured nuclear cross-section ratio, we
fix σtot(pN)(= σtot(pp)) first and calculate the denominatorσmod

tot (A,σtot(pp)) by taking
σtot(pp) from parameterization (27) evaluated at the laboratory momentum of the nuclear
cross-section ratio as given in Table 6. We adjust the model input parameterσtot(hN) until
the model based total cross-section ratio in (38) equals the experimental one. At SELEX
energy we interpret the value of the parameterσtot(hN) to be equal toσtot(hp).

8.2.1. Results forσtot(6
−N) andσtot(π

−N) using the ratio method
Results of the ratio method are presented in Table 9 together with the results from

the CH2–C method. The errors of hadron–nucleon cross sections resulting from the ratio
method include both the error in the measured nuclear cross-section ratio and model
uncertainties. Model uncertainties are taken into account by adding the error of a model
cross-section ratio in quadrature to the error of the corresponding experimental cross-
section ratio given in Table 6. The error in the model cross-section ratio is derived from the
discrepancy between model and measured cross sections observed for pA andπ−A total
cross sections. Typical sizes of these discrepancies are shown in Table 8.

Further, as two different parameterizations for(d2σ/dt dM2)|t=0 are available, we
evaluate the ratio method for both, average the results and include their difference in the
error of the mean.

Finally, we want to mention that as little data exists for6− scattering, we insert in the
computation ofσmod

tot (6
−A) for B6−N, ρ′

6−N and(d2σ/dt dM2)|t=0, the parameterizations
from pp-reactions.

Comparing the hadron–nucleon cross sections of the ratio and the difference method, we
find that the results agree well within their errors. As final result, we average the hadron–
nucleon cross-section values from all methods. These total averages are presented in the
last row of Table 9 together with a corresponding averaged laboratory momentum.

Table 8
Discrepancy between model and measured total cross sections. The measured pA cross sections are
scaled bykscale

Measured cross Calculated Cross-section Nominal
Reaction section×kscale cross section difference plab

[mb] [mb] [mb] [GeV/c]

σtot(π
−Be) 188.7 188.8 0.1 640

σtot(π
−C) 234.1 231.4 2.7 590

σtot(pBe) 270.2 277.0 6.8 640

σtot(pC) 336.8 335.9 0.9 590
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Table 9
The total cross sectionsσtot(6

−N) andσtot(π
−N) resulting from all methods and their average

Method σtot(6
−N) σtot(π

−N) plab
description [mb] [mb] [GeV/c]

difference method 33.7± 3.1 26.0± 2.1 585
ratio method, Be data 37.4± 1.3 27.1± 1.5 640
ratio method, C data 37.0± 0.8 26.4± 1.3 595

total average 37.0± 0.7 26.6± 0.9 610

8.3. Comparison to models

8.3.1. Comparisons forσtot(π
−p)

Most of the models and parameterizations for hadron–nucleon cross sections exploit the
interplay of two contributions: the Pomeron contribution, which dominates asymptotics at
high energies; and the Regge contribution, which is important at low and medium energies.
Many models (e.g., [35,36]) describe the energy dependence of total cross sections quite
well. We display in Fig. 14 experimental data from [8] and SELEX along with the
parameterization forσtot(π

−p, s):

σtot(π
−p, s)= 35.9s−0.45+ 13.7s+0.079

for plab > 10 GeV/c, σtot in mb,s in GeV2, (39)

from the 1996 Particle Data Group formulation [37].
We point out that so far the total cross sectionσtot(π

−p) has been measured only up to
plab= 370 GeV/c [38]. Thus, the SELEX total average forσtot(π

−N) at 610 GeV/c is the
first new measurement at higher laboratory momentum.

Fig. 14. Existing data forσtot(π
−p) in comparison with our results and parameterization (39) of the

particle data group 1996.
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In Fig. 14 the parameterization (39) of the Particle Data Group, which uses a Pomeron
intercept of 0.079, is overlaid to the data. Qualitative inspection of (39) suggests that it is
strongly weighted by the huge number of low energy data points and does not sufficiently
well take into account the very accurate data of [38] at high energy. Our result seems
to strengthen the trend observed in data of [38], implying a faster rise of theπ−p cross
section with increasing energy than represented by (39). We just want to point out this
observation, which may turn out to be in conflict with the belief that the energy increase
of hadronic cross sections is universal. We do not give any quantitative estimate of the
Pomeron intercept for theπ−p cross section. Its value is correlated to the assumed Regge
contribution at low energy and its determination requires a careful analysis of all the data.

8.3.2. Comparisons forσtot(6
−p)

Data on the total cross sectionσtot(6
−p) are scarce. In the past, there have been only

two hyperon-beam experiments [4,39] giving information about the behavior ofσtot(6
−p)

in the momentum range 19–136.9 GeV/c. The SELEX result forσtot(6
−N) provides the

first high energy data. Fig. 15 shows a compilation of data from previous experiments
together with the SELEX result. Our measurement is 2.9 mb larger than the data point at
136.9 GeV/c from [4], indicating a rise ofσtot(6

−p) with increasing beam energy.
Overlaid on the experimental data is the prediction forσtot(6

−p,plab) from H. Lipkin
(see [36]):

σtot(6
−p,plab)= 19.5

(plab

20

)0.13+ 13.2
(plab

20

)−0.2

for plab > 10 GeV/c, σtot in mb,plab in GeV/c. (40)

The corresponding curve in Fig. 15 shows good agreement between our measurement and
this prediction.

It would be certainly desirable to find the Pomeron intercept for the6−p cross section.
The lack of low energy data does not allow any reasonable estimate of the intercept.

Fig. 15. Existing data forσtot(6
−p) in comparison with our results and prediction (40).
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9. Conclusions

The SELEX collaboration has measured the total cross sectionsσtot(π
−Be), σtot(π

−C),
σtot(π

−Cu), σtot(π
−CH2), σtot(6

−Be), σtot(6
−C), σtot(6

−Cu), σtot(pBe) andσtot(pC) in
a broad momentum range around 600 GeV/c using a transmission method that was adapted
to the specifics of the SELEX spectrometer. The accuracy of the results is within 0.6–1.5%
for Be, C and CH2 and about 17.5% for Cu.

The ratios of hadron–nucleus cross sections for Be and C show thatπ−–nucleus cross
sections are a about factor of 0.7 lower than corresponding proton–nucleus cross sections.
Furthermore, we find that the6−–nucleus cross sections are about a factor of 0.92 smaller
than corresponding proton–nucleus cross sections.

We observe that the results forσtot(pBe), σtot(pC), σtot(π
−Be), σtot(π

−C) and
σtot(π

−Cu) join smoothly onto corresponding cross-section data at lower energy. The good
agreement of the proton–nucleus and theπ−–nucleus cross sections to Glauber model
calculations with an inelastic screening correction and one adjustable parameter in the
density distribution justifies the deduction ofσtot(6

−p) andσtot(π
−p) from the nuclear

cross sections.
We deduced the hadron–nucleon cross sectionsσtot(π

−N) andσtot(6
−N), which we

regard asσtot(π
−p) andσtot(6

−p), from our nuclear data using a CH2–C difference and
a model based ratio method. Results from the difference method have an accuracy of 8.1–
9.2%, while results from the ratio method have an accuracy of 2.2–5.5%.

The total averages of all methods represent first measurements forσtot(π
−p) and

σtot(6
−p) near 600 GeV/c. Our result forσtot(6

−p) shows clearly a rise of this cross
section with increasing beam energy, which agrees with the prediction of [36].

Our result forσtot(π
−p) joins nicely onto the trend of the high energy data of [38]. As

mentioned in Section 8.3.1, the data of [38] and our result may indicate a faster increase
of theπ−p cross section than predicted by the parameterization given by the Particle Data
Group in 1996.

This indication of a faster increase of theπ−p cross section compared to the pp (andpp)
one can be verified only by a high statistics measurement using aπ− beam and a hydrogen
target to avoid some systematic errors inherent to the method used in this experiment. In
our opinion a measurement of theπ−p cross section at 600 GeV/c or higher is the only
experimentally accessible opportunity to test if the energy variation of a hadronic cross
section might be different from that for pp and (andpp) cross sections.
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