135 research outputs found

    Selenium Biotransformations in an Engineered Aquatic Ecosystem for Bioremediation of Agricultural Wastewater via Brine Shrimp Production

    Get PDF
    An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filterfeeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp (Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested

    Grazing‐angle characterization of photosynthetic oxygen evolution protein monolayers

    Full text link
    Variable‐period x‐ray standing wave (XSW) spectroscopy has been shown to be a practical probe for studying metalloproteins. The photosynthetic oxygen evolving complex (OEC) is a transmembrane multipolypeptide complex that catalyzes the oxidation of water to dioxygen. The OEC contains Mn, Ca, and Cl and is potentially amenable to study by XSW. In this feasibility study, preliminary results on OEC samples deposited on Au mirrors are discussed. First XSW measurements from the SSRL grazing‐incidence setup are presented. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70867/2/RSINAK-67-9-3364-5.pd

    Chemical biology in the embryo: In situ imaging of sulfur biochemistry in normal and proteoglycan-deficient cartilage matrix

    Get PDF
    © 2016 American Chemical Society. Proteoglycans (PGs) are heavily glycosylated proteins that play major structural and biological roles in many tissues. Proteoglycans are abundant in cartilage extracellular matrix; their loss is a main feature of the joint disease osteoarthritis. Proteoglycan function is regulated by sulfation-sulfate ester formation with specific sugar residues. Visualization of sulfation within cartilage matrix would yield vital insights into its biological roles. We present synchrotron-based X-ray fluorescence imaging of developing zebrafish cartilage, providing the first in situ maps of sulfate ester distribution. Levels of both sulfur and sulfate esters decrease as cartilage develops through late phase differentiation (maturation or hypertrophy), suggesting a functional link between cartilage matrix sulfur content and chondrocyte differentiation. Genetic experiments confirm that sulfate ester levels were due to cartilage proteoglycans and support the hypothesis that sulfate ester levels regulate chondrocyte differentiation. Surprisingly, in the PG synthesis mutant, the total level of sulfur was not significantly reduced, suggesting sulfur is distributed in an alternative chemical form during lowered cartilage proteoglycan production. Fourier transform infrared imaging indicated increased levels of protein in the mutant fish, suggesting that this alternative sulfur form might be ascribed to an increased level of protein synthesis in the mutant fish, as part of a compensatory mechanism

    Long-range chemical sensitivity in the sulfur K-edge X-ray absorption spectra of substituted thiophenes

    Get PDF
    © 2014 American Chemical Society. Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments' efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid

    In situ biospectroscopic investigation of rapid ischemic and postmortem induced biochemical alterations in the rat brain

    Get PDF
    © 2014 American Chemical Society. Rapid advances in imaging technologies have pushed novel spectroscopic modalities such as Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) at the sulfur K-edge to the forefront of direct in situ investigation of brain biochemistry. However, few studies have examined the extent to which sample preparation artifacts confound results. Previous investigations using traditional analyses, such as tissue dissection, homogenization, and biochemical assay, conducted extensive research to identify biochemical alterations that occur ex vivo during sample preparation. In particular, altered metabolism and oxidative stress may be caused by animal death. These processes were a concern for studies using biochemical assays, and protocols were developed to minimize their occurrence. In this investigation, a similar approach was taken to identify the biochemical alterations that are detectable by two in situ spectroscopic methods (FTIR, XAS) that occur as a consequence of ischemic conditions created during humane animal killing. FTIR and XAS are well suited to study markers of altered metabolism such as lactate and creatine (FTIR) and markers of oxidative stress such as aggregated proteins (FTIR) and altered thiol redox (XAS). The results are in accordance with previous investigations using biochemical assays and demonstrate that the time between animal death and tissue dissection results in ischemic conditions that alter brain metabolism and initiate oxidative stress. Therefore, future in situ biospectroscopic investigations utilizing FTIR and XAS must take into consideration that brain tissue dissected from a healthy animal does not truly reflect the in vivo condition, but rather reflects a state of mild ischemia. If studies require the levels of metabolites (lactate, creatine) and markers of oxidative stress (thiol redox) to be preserved as close as possible to the in vivo condition, then rapid freezing of brain tissue via decapitation into liquid nitrogen, followed by chiseling the brain out at dry ice temperatures is required

    Elemental and chemically specific x-ray fluorescence imaging of biological systems

    Get PDF

    Search for diboson resonances with boson-tagged jets in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    Narrow resonances decaying into WW, WZ or ZZ boson pairs are searched for in 36.7 fb−1 of proton–proton collision data at a centre-of-mass energy of √s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The diboson system is reconstructed using pairs of large-radius jets with high transverse momentum and tagged as compatible with the hadronic decay of high-momentum W or Z bosons, using jet mass and substructure properties. The search is sensitive to diboson resonances with masses in the range 1.2–5.0 TeV. No significant excess is observed in any signal region. Exclusion limits are set at the 95% confidence level on the production cross section times branching ratio to dibosons for a range of theories beyond the Standard Model. Model-dependent lower limits on the mass of new gauge bosons are set, with the highest limit set at 3.5 TeV in the context of mass-degenerate resonances that couple predominantly to bosons

    Search for high-mass resonances decaying to Ï„Îœ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for high-mass resonances decaying to τ Îœ using proton-proton collisions at √ s = 13     TeV produced by the Large Hadron Collider is presented. Only τ -lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1     fb − 1 . No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τ Îœ production cross section. Heavy W â€Č bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G ( 221 ) model are excluded at the 95% credibility level

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    • 

    corecore