220 research outputs found

    Sub-10 ps time tagging of electromagnetic showers with scintillating glasses and SiPMs

    Full text link
    The high energy physics community has recently identified an e+ee^+e^- Higgs factory as one of the next-generation collider experiments, following the completion of the High Luminosity LHC program at CERN.The moderate radiation levels expected at such colliders compared to hadron colliders, enable the use of less radiation tolerant but cheaper technologies for the construction of the particle detectors. This opportunity has triggered a renewed interest in the development of scintillating glasses for the instrumentation of large detector volumes such as homogeneous calorimeters. While the performance of such scintillators remains typically inferior in terms of light yield and radiation tolerance compared to that of many scintillating crystals, substantial progress has been made over the recent years. In this paper we discuss the time resolution of cerium-doped Alkali Free Fluorophosphate scintillating glasses, read-out with silicon photo-multipliers in detecting single charged tracks and at different positions along the longitudinal development of an electromagnetic shower, using respectively 150~GeV pions and 100~GeV electron beams at the CERN SPS H2 beam line. A single sensor time resolution of 14.4~ps and 5-7~ps was measured respectively in the two cases. With such a performance the present technology has the potential to address an emerging requirement of future detectors at collider experiments: measuring the time-of-flight of single charged particles as well as that of neutral particles showering inside the calorimeter and the time development of showers

    Radiation hardness of Ce-doped sol-gel silica fibers for High Energy Physics applications

    Get PDF
    The results of irradiation tests on Ce-doped sol-gel silica using X- and g-rays up to 10 kGy are reported, in order to investigate the radiation hardness of this material for high energy physics applications. Sol-gel silica fibers with Ce concentrations of 0.0125 mol% and 0.05 mol% are characterized by means of optical absorption and attenuation length measurements before and after irradiation. The two different techniques give comparable results, evidencing the formation of a main broad radiation-induced absorption band, peaking at about 2.2 eV, related to radiation-induced color centers. The results are compared with those obtained on bulk silica. This study reveals that an improvement of the radiation hardness of Ce-doped silica fibers can be achieved by reducing Ce content inside the fiber core, paving the way for further material development

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Electroweak production of two jets in association with a Z boson in proton-proton collisions root s =13 TeV

    Get PDF
    A measurement of the electroweak (EW) production of two jets in association with a Z boson in proton-proton collisions at root s = 13 TeV is presented, based on data recorded in 2016 by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb(-1). The measurement is performed in the lljj final state with l including electrons and muons, and the jets j corresponding to the quarks produced in the hard interaction. The measured cross section in a kinematic region defined by invariant masses m(ll) > 50 GeV, m(jj) > 120 GeV, and transverse momenta P-Tj > 25 GeV is sigma(EW) (lljj) = 534 +/- 20 (stat) fb (syst) fb, in agreement with leading-order standard model predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. No evidence is found and limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -2.6 <cwww/Lambda(2) <2.6 TeV-2 and -8.4 <cw/Lambda(2) <10.1 TeV-2. The additional jet activity of events in a signal-enriched region is also studied, and the measurements are in agreement with predictions.Peer reviewe

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species‐level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity

    Inclusive Search for a Highly Boosted Higgs Boson Decaying to a Bottom Quark-Antiquark Pair

    Get PDF
    © 2018 CERN. An inclusive search for the standard model Higgs boson (H) produced with large transverse momentum (pT) and decaying to a bottom quark-antiquark pair (bb) is performed using a data set of pp collisions at s=13 TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb-1. A highly Lorentz-boosted Higgs boson decaying to bb is reconstructed as a single, large radius jet, and it is identified using jet substructure and dedicated b tagging techniques. The method is validated with Z→bb decays. The Z→bb process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of H→bb with reconstructed pT > 450 GeV and in the pseudorapidity range -2.5 < η < 2.5 is 74±48(stat)-10+17(syst) fb, which is consistent within uncertainties with the standard model prediction

    Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at √s=13 TeV

    Get PDF
    Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb−1 of proton-proton collisions at s√=13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500–1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Finally, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980–1200 GeV are excluded depending on the mass of the next-to-lightest neutralino

    Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Results are presented from a search for the direct electroweak production of charginos and neutralinos in signatures with either two or more leptons (electrons or muons) of the same electric charge, or with three or more leptons, which can include up to two hadronically decaying tau leptons. The results are based on a sample of protonproton collision data collected at p s = 13TeV, recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb1. The observed event yields are consistent with the expectations based on the standard model. The results are interpreted in simpli ed models of supersymmetry describing various scenarios for the production and decay of charginos and neutralinos. Depending on the model parameters chosen, mass values between 180GeV and 1150 GeV are excluded at 95% CL. These results signi cantly extend the parameter space probed for these particles in searches at the LHC. In addition, results are presented in a form suitable for alternative theoretical interpretations.Sponsoring Consortium for Open Access Publishing in Particle Physic

    Étude de fibres inorganiques monocrystallines en calorimétrie à double lecture

    No full text
    This thesis focuses on the improvement of the energy resolution of hadron calorimeters. The approach is based on dual-readout, which consists in the simultaneous detection of both scintillation and Cherenkov light. The comparison of these two signals allows a compensation of the energy fluctuations, which are inherent to the detection of hadronic showers. Lutetium Aluminium garnets (LuAG), which are efficient scintillators when activated with rare-earth dopants (i.e. Cerium), can also act as Cherenkov radiators when undoped. Both undoped and doped crystals can then be assembled to build an efficient dual-readout calorimeter. With the objective to investigate the feasibility of this concept, the effects of the doping concentration and the use of various co-dopant on the light output and the timing properties of LuAG were studied. The growth method was demonstrated to induce significant differences in the nature and concentration of structural defects. The optimum geometry, which is based on singlecrystals shaped into fibers, favors the micro-pulling down technique. This technology does not outperform Bridgman and Czochralski techniques but was chosen on bases of cost considerations and large scale productions abilities. The optimization of the growth parameters led to the production of single-crystalline fibers of Cerium-doped LuAG with a light output of 8000 photons per MeV and an adequate behavior as light guide due to a well-controlled optical quality. Test with electrons and pions in high energy calorimetry conditions allow to engage a future production of a larger-scale prototypeL'amélioration de la résolution en énergie des calorimètres hadroniques est adressée dans cette thèse. L'approche envisagée se base sur la technique du dual-readout qui consiste à détecter simultanément les radiations Cherenkov et la scintillation. La comparaison de ces deux signaux permet en effet de compenser les fluctuations observées dans la détection de gerbes hadroniques. Les grenats d'Aluminium et de Lutetium (LuAG), qui sont d'efficaces scintillateurs une fois activés avec des terres rares, peuvent aussi jouer le rôle de radiateur Cherenkov sous leur forme non-dopée. Les deux types de matériaux peuvent alors être assemblés pour former un calorimètre dual-readout performant. Dans l'objectif d'étudier la faisabilité de ce concept, les effets de la concentration en dopant et de l'addition de divers codopants sur le rendement lumineux et les propriétés temporelles ont été étudiés. Nous avons montré le rôle important de la technique de croissance choisie sur la nature et la concentration des défauts structuraux. La géométrie optimale, qui se base sur des monocristaux en forme de fibres, donne l'avantage à la technique de micro-pulling down. Cette technologie ne montre pas de meilleurs résultats que les techniques de Bridgman et de Czochralski mais a été retenue pour des raisons de coût et d'adaptabilité pour une production à grande échelle. L'optimisation des paramètres de croissance a permis la production de fibres monocristallines de LuAG dopées avec du Cérium présentant un rendement lumineux de 8000 photons par MeV et un bon comportement en tant que guide de lumière grâce à une qualité optique bien maitrisée. Des tests avec des faisceaux d'électrons et de pions, en conditions de calorimétrie à haute énergie, permettent désormais d'envisager la production d'un prototype à plus grande échell
    corecore