98 research outputs found

    Late Quaternary Chorus Frog (Pseudacris) from the Channel Islands, California

    Get PDF
    Abstract.-Fossil and subfossil remains of the vertebrate faunas from the northern Channel Islands, southern California, have been studied for many decades. Continued interest has focused on skeletal remains of birds, rodents, and mammoths from archaeological and paleontological localities, but considerably less attention has been placed on the detailed description of the herpetofauna (salamanders, anurans [frogs and toads], lizards, and snakes) on the Channel Islands. We present descriptions of an ilium of an anuran from Santa Rosa Island (Larramendy North; radiocarbon dating at least 13,393 calibrated years ago) and two tibiofibulae San Miguel Island (Daisy Cave) dating from earliest and middle late Holocene layers. We identify the fossil ilium as Pseudacris sp. (chorus frog): 1) it is the lowest level that skeletal morphology permits us to attempt, 2) realizing that it appears morphologically closest to P. regilla, and 3) yet realizing that not all species of Pseudacris and Hyla have been directly compared or are understood. The extant amphibian fauna on these islands is depauperate. The remains presented here represent the first description of a fossil anuran from the northern Channel Islands. It is now understood that a chorus frog lived on glacial-age Santa Rosae Island, yet it is not understood when its distribution was reduced to just the present two largest islands, Santa Rosa and Santa Cruz

    Explorations, Vol. 1, No. 2

    Get PDF
    The cover print is a multi-plate colored etching entitled Skull and Sun Dial, by Susan Groce, Associate Professor of Art at the University of Maine at Orono, where she teaches Printmaking and Drawing. Articles include: The Quaternary Ice Age Plants and Animals: Secrets of the Colorado Plateau, by Jim I. Mead and Emilee M. Mead Finding the Facts: Pieces of the Puzzle On Location: In Search of the First Americans A Temporal Vegetational Continuum: From Tundra to Forest, by Carole J. Bombard for Ronald B. Davis Anatomy of an Excavation, by Robson Bonnichsen What the Bones Tell Us, by Marcella H. Sorg People of the Americas Publication Program, by Emilee M. Mea

    Local Extinction and Unintentional Rewilding of Bighorn Sheep (Ovis canadensis) on a Desert Island

    Get PDF
    Bighorn sheep ( Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476-1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct

    Pleistocene/Holocene Cave Fossils From Grand Canyon National Park: Ice Age (Pleistocene) Flora, Fauna, Environments, and Climate of the Grand Canyon, Arizona

    Get PDF
    The Colorado Plateau is a distinct physiographic province in western North America covering an area of roughly 337,000 km2 (130,115 mi2) across parts of Arizona, Colorado, New Mexico, and Utah. Elevations range from about 360 m (1,180 ft) in the overall Grand Canyon (GC; which includes the Grand Canyon National Park, GRCA) river corridor to an average at the eastern South Rim of 2,072 m (6,800 ft) to 3,850 m (12,630 ft) on the nearby San Francisco Peaks at Flagstaff, Arizona, with an average elevation of 1,525 m (5,000 ft). The Colorado River of Grand Canyon is located along the southwestern portion of the Colorado Plateau in Arizona and is renowned for its dramatic display of geomorphic effects created by fluvial incision and its unique dry-preservation of fossils from the Ice Age (late Pleistocene and Holocene [Quaternary]; most recent 2.58 million years). Although there were at least 22 glacial-interglacial cycles during the Ice Age, this discussion is limited to the most recent episode (called the Wisconsinan Glaciation), which includes the transition to the modern climate (latest Pleistocene and Holocene; the most recent 50,000 years of geologic history)

    Paleobiology of a Large Mammal Community From the Late Pleistocene of Sonora, Mexico

    Get PDF
    A paleontological deposit near San Clemente de Térapa represents one of the very few Rancholabrean North American Land Mammal Age sites within Sonora, Mexico. During that time, grasslands were common, and the climate included cooler and drier summers and wetter winters than currently experienced in northern Mexico. Here, we demonstrate restructuring in the mammalian community associated with environmental change over the past 40,000 years at Térapa. The fossil community has a similar number of carnivores and herbivores whereas the modern community consists mostly of carnivores. There was also a 97% decrease in mean body size (from 289 kg to 9 kg) because of the loss of megafauna. We further provide an updated review of ungulates and carnivores, recognizing two distinct morphotypes of Equus, including E. scotti and a slighter species; as well as Platygonus compressus; Camelops hesternus; Canis dirus; and Lynx rufus; and the first regional records of Palaeolama mirifica, Procyon lotor, and Smilodon cf. S. fatalis. The Térapa mammals presented here provide a more comprehensive understanding of the faunal community restructuring that occurred in northern Mexico from the late Pleistocene to present day, indicating further potential biodiversity loss with continued warming and drying of the region

    Generalised network architectures for environmental sensing: case studies for a digitally enabled environment

    Get PDF
    A digitally enabled environment is a setting which incorporates sensors coupled with reporting and analytics tools for understanding, observing or managing that environment. Large scale data collection and analysis are a part of the emerging digitally enabled approach for the characterisation and understanding of our environment. It is recognised as offering an effective methodology for addressing a range of complex and interrelated social, economic and environmental concerns. The development and construction of the approach requires advances in analytics control linked with a clear definition of the issues pertaining to the interaction between elements of these systems. This paper presents an analysis of selected issues in the field of analytics control. It also discusses areas of progress, and areas in need of further investigation as sensing networks evolve. Three case studies are described to illustrate these points. The first is a physical analytics test kit developed as a part of the “Reinvent the Toilet Challenge” (RTTC) for process control in a range of environments. The second case study is the Cranfield Urban Observatory that builds on elements of the RTTC and is designed to allow users to develop user interfaces to monitor, characterise and compare a variety of environmental and infrastructure systems plus behaviours (e.g., water distribution, power grids). The third is the Data and Analytics Facility for National Infrastructure, a cloud-based high-performance computing cluster, developed to receive, store and present such data to advanced analytical and visualisation tools.Engineering and Physical Sciences Research Council (EPSRC): EP/P016782/1, EP/R013411/1, EP/R012202/1 and EP/R017727/1. Bill & Melinda Gates Foundatio

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF
    corecore