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A B S T R A C T   

A digitally enabled environment is a setting which incorporates sensors coupled with reporting and analytics 
tools for understanding, observing or managing that environment. Large scale data collection and analysis are a 
part of the emerging digitally enabled approach for the characterisation and understanding of our environment. 
It is recognised as offering an effective methodology for addressing a range of complex and interrelated social, 
economic and environmental concerns. The development and construction of the approach requires advances in 
analytics control linked with a clear definition of the issues pertaining to the interaction between elements of 
these systems. This paper presents an analysis of selected issues in the field of analytics control. It also discusses 
areas of progress, and areas in need of further investigation as sensing networks evolve. Three case studies are 
described to illustrate these points. The first is a physical analytics test kit developed as a part of the “Reinvent 
the Toilet Challenge” (RTTC) for process control in a range of environments. The second case study is the 
Cranfield Urban Observatory that builds on elements of the RTTC and is designed to allow users to develop user 
interfaces to monitor, characterise and compare a variety of environmental and infrastructure systems plus 
behaviours (e.g., water distribution, power grids). The third is the Data and Analytics Facility for National 
Infrastructure, a cloud-based high-performance computing cluster, developed to receive, store and present such 
data to advanced analytical and visualisation tools.   

1. Introduction 

Large scale data collection and analysis are increasingly seen as the 
best means to address issues such as urban planning, climate resilience, 
digital security, declining air quality and infrastructure development [1, 
2]. They are also key to the development of the digitally enabled envi-
ronment (DEE). A DEE can be defined as an integrated system 
comprising of devices or agents which can interact with each other via a 
range of communication tools, with associated analytical and data 
management capabilities. These devices and agents can also be used 
both for monitoring and management of the DEE itself. The environ-
mental DEE represents the application of this approach in understanding 

and managing the atmosphere and natural environment. 
A broad range of low-cost environmental and latent physical 

parameter sensing technologies are now widely available. The breadth, 
variation and relatively low cost of many of these sensors is in part due 
to the rapid uptake of accessible electronics/computing environments 
and related developments within Internet of Things (IoT) in-
frastructures. Observable parameters can include physical, spectro-
scopic, chemical, biological, biometric, acoustic and vibration, 
electrical, thermodynamic and thermophysical properties (with mea-
surements taken either directly or indirectly). These can be used to 
provide insights into the wider environment or specific information 
about infrastructure or networks. Key to this has been the advent of 
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widespread low-cost wireless communications hardware and software, 
primarily associated with global telecommunications. Early examples 
are the General Packet Radio Service (GPRS) and Global Navigation 
Satellite System, e.g., Global Positioning Systems. The GPRS is linked to 
2nd and 3rd generation mobile telephony networks (2G and 3G). This 
has been surpassed by post 3G and 4G standards and approaches, e.g., 
wideband code division multiple access and long-term evolution, and 
the emergent 5G infrastructure. These developments have allowed large 
amounts of geo-temporally referenced data to be telemetered globally 
on previously unachievable scales and with relative ease. Coupled with 
advances in encryption and fidelity retention, together with allied cloud 
capabilities for receiving and processing the data arising, this has further 
opened new opportunities for broad scale information transfer. 

In this paper, we discuss a framework of generalised network ar-
chitectures for environmental sensing to analyse the digital enabled 
environmental approach in the field of analytics control. We seek to 
explore end-to-end aspects of network design, some of the wider land-
scape of network operation, and the data pipeline. The paper discusses 
selected case studies specifically from an application perspective, as well 
as drawing on wider aspects of dispersed heterogeneous environmental 
sensing networks. The concepts described in this paper will be discussed 
in the context of ‘Urban Observatory’ and ‘Living Laboratory’ type ex-
periments as contemporary. These are examples of applied broad scale 
multi-disciplinary sensing and with consideration of cloud-based plat-
forms able to receive and hold the data arising and support its subse-
quent analysis and visualisation. 

2. Architecture for dispersed heterogeneous environmental 
sensing networks 

2.1. Observational networks overview 

Sensor technologies and approaches are increasingly being com-
bined with cutting edge communication technologies to offer integrated 
systems for collecting data as well as their subsequent transmission and 
storage. These are the base requirements for observational networks 
which in addition require further analysis to understand the collected 
data and then onward dissemination of results to stakeholders. For in-
tegrated observational networks, emergent issues with data quality 
assessment, quality assurance, data assimilation, security and dissemi-
nation of outputs need to be addressed. A typical IoT deployment 
infrastructure can be described as a layered stack. Starting from the 
physical layer which initiates data generation workflows, through sys-
tem management and analytics workflow layers and finally to the 
application layer. The application layer being where data workflows are 
converted to value-adding services for a range of users. To deliver value, 
these stack environments implement a range of connectivity standards 
which are in turn relevant to different connectivity layers. These mostly 
follow the Open Systems Interconnection layers [3] guidelines but 
require cross-layer interoperability for effective integration, including 
the application layer and semantic interoperability. The conversion of 
data workflows is in most cases associated with applying intelligent 
analytics to suggest contextually relevant actions, wherein context is 
determined by the circumstances and the environment that the acquired 
data are derived from. Coupled with the need for an infrastructure that is 
easy to procure, install and maintain at low cost, new approaches are 
needed to model the context of data to deliver situational awareness and 
to drive the development and operation of transformative sensing 
approaches. 

2.2. Generalised network topology models 

The traditional model for analytics control and monitoring is to in-
strument the observation subject and to develop a data feed directed at a 
designated control/observation point. Incorporating multiple sensors 
and various forms of wireless communications represents an extension 

of this approach. 
Four broad high-level network topologies are outlined in Fig. 1 and 

described below in further detail. Here, the local node refers to con-
trolling electronics which may also include a form of local data or set-
tings storage. The access node can be used for automatic data telemetry, 
direct local access, or other forms of interrogative access. The sensor/ 
actuator, local node and access node can be in a single enclosure, or as 
components situated remotely. 

2.3. Network data 

A common consequence of these emerging sensor networks is the 
generation of huge amount of data, often referred to as big data. Big data 
describes information/data assets characterised by a number of ‘V’s, 
their high ‘volume’, ‘velocity’, ‘variety’, ‘variability’, and ‘value’ for 
different stakeholders. It requires high-capacity cloud-processing ser-
vices [5,6], as well as the associated analytical approaches, such as 
machine learning and wider AI approaches. This involves the ability to 
store, process and analyse both structured and unstructured data, 
combining archive and real-time streaming data [6,7]. Data assets 
include real-time and near real-time data-streams from sensor networks, 
web services and city infrastructures. 

Big data from emerging dispersed heterogeneous environmental 
sensing networks can include a broad range of data types and sources. 
They are volunteered and crowd-sourced citizen data from social media, 
mobile apps and citizen participation/citizen science platforms, and also 
traditional static historic/legacy data sources. Data can take many 
forms, from conventional data stored in Relational Database Manage-
ment Systems to file and document/blob stores (or ‘lakes’) for unstruc-
tured data and/or real-time streaming data being generated by IoT 
sensor networks, satellites [8,9], and web Application Programming 
Interfaces (APIs) [10]. Such data can be generated from a wide range of 
sources – which are increasing in availability, much of it being open 
source in origin [11]. The open source philosophy has revolutionised 
data-driven approaches and techniques. It has been shown that big data 
approaches offer the potential to improve environmental modelling and 
urban analytical approaches, including assessment of performance of 
urban regions and smart city infrastructures [12], and also in applica-
tions where predictive or real time environmental assessment is required 
– for example in flood preparedness and coastal management [13], risk 
analysis [11,14], or in the environmental impacts of pollution and 
contamination [15]. 

2.3.1. Network data flows 
Data transfer flows within and between networks have three broad 

aims, outputting purposeful data (or ‘capta’) (e.g., ambient tempera-
ture), ingesting external operational data (e.g., enabling management of 
operation of the network and its components based on external ana-
lytics) and internally exchanging operational data (i.e., enabling man-
agement of operation of the network and its components based on 
internal decision trees). These data flows can be on a range of scales in 
terms of content, timing and extent (e.g., geographical location). The 
latter two flows are primarily part of network management (i.e., system 
maintenance) and the former is focused on analytics and monitoring and 
is usually the main flow in scale and the usually underpins the funda-
mental purpose of the network. Data governance rules are vital to these 
kinds of analytics networks and can be broadly grouped into 6 categories 
(Fig. 2).  

1. Data Ownership. Data ownership can be a complex issue especially 
where the network has multiple users and sponsors (e.g., a science- 
driven network installation supported through government opera-
tional permissions), and data fusion is used in the pre-processing of 
data streams [16]. Definition of ownership and Intellectual Property 
(IP), at the network design stage is also vital, as are planning exer-
cises for downstream analytics and/or product combination. 

M.I. Mead et al.                                                                                                                                                                                                                                 



Array 14 (2022) 100168

3

2. Transfer Protocols. Transfer protocols are concerned about data 
security, International Organization for Standardization (ISO) stan-
dards, ethics, interagency access and international streaming. For 
emerging dispersed heterogeneous environmental sensing networks, 
transfer protocols can be used to embed measures for data security 
such as checksum verification and content validation, whether or not 
ISO standards (e.g., number and function) are required depends on 
the type of sensing network being used and the target user groups. 

Ethical considerations around data sharing need to be assessed. 
These considerations could be associated with the compilation and 
storage of personal data (either as a primary goal or as a secondary 
effect, e.g., hospital admissions or people’s movements) or ambient 
data. The ethics of data transfer to other agencies, especially those 
with statutory responsibilities or powers also need be considered 
given that some measurements once processed and validated have 
legal and compliance implications (e.g., mixing ratios of a regulated 
pollutant gas species). The transfer of data in this way also has data 
ownership implications. Similarly, for international data transfer, 
additional national governmental jurisdictions and considerations 
need to be accounted for, as some data may be considered a national 
asset, security issue or saleable item. Hence, it needs specific per-
missions for onward sharing or dissemination.  

3. User Interfaces: The level of data presented, its format and level of 
processing are defined by the user group(s) it is aimed at. The dif-
ferences between science and engineering requirements and gov-
ernment and public users and uses may be significant (e.g. tabulated 
sensor data output vs graphical representation of information). In 
many cases direct output data is relatively meaningless without 
processing (e.g., transformation from initial machine counts, 

hexadecimal compressed files or from raw voltages). Once data is in a 
human readable form and presented in understandable values it may 
not be suitable for general dissemination (uncorrected, uncalibrated 
or not yet validated) and may require further transformation 
depending on the complexity of the user requirement. For certain 
types of sensors or actuators, these transformations can be under-
taken at the node (edge) itself and the data simplified before onward 
transmission.  

4. Compliance Implications. In cases where there are jurisdictional 
compliance requirements or implications, data needs to be validated 
and calibrated appropriately. In parallel, submission protocols need 
to be established for creating regulatory data products.  

5. Data Security. Operational backups (including redundant systems) 
are important for supporting long term data security. Depending on 
network requirements these measures can act upon varying levels of 
processed data. The data may be secured with controlled access or be 
anonymised depending on ethical considerations. Particular care 
needs to be taken in regard to multi-party cloud-based data access, 
with different products having different levels of security depending 
on product and user. It is important that appropriate care should be 
taken to consider the security at sensor (e.g., locally stored or held in 
memory for transmission or processing).  

6. Data Legacy. Plans for data legacy need to be incorporated into 
network design. This includes IP control (related to the data 
ownership) of both the pre-processed data and the various levels of 
processed data. In many applications best practice would retain both 
the original data and the mechanism for its processing and trans-
forming. In other applications synthesised products with contextual 
data are the appropriate products to be stored. This data needs to be 

Fig. 1. High level schematic of 
dispersed topologies. Partially pre-
sented in a data flow view and partially 
an implementation view. Configuration 
from Left to right: 1). Direct sensor, 
configuration; 2) Dispersed node 
network, configuration (with two net-
woks shown); 3) Connected node 
network and configuration; 4) Mesh 
network [24].  

1. Direct sensors: This topology can be permanent or switched. A permanent direct sensor topology is a hardwired or fixed wireless connection established between 
two points. Switching is based on a connection that can be moved between different access nodes. This topology type is commonly used in applications where a 
single sensor is used together with a smartphone, tablet or dedicated microprocessor acting as a data aggregator.  

2. Dispersed node network: Each network of this type consists of a single “central node,” such as a hub or a switch that every sensor in the local network connects to 
and a dedicated access node. This topology is easy to design, implement, and extend. All data traffic flows through the network central node, thus an appropriately 
intelligent central node is required. Any failure of this central node will result in the consequent loss of the entire local network, so contingencies may also be 
required in the design. The dispersed node network topology is one of the most common sensor network topologies. A wireless personal area network, consisting of 
a gateway connected to several wireless sensors, is an example of this topology.  

3. Connected node network: For this topology there is a single access point to the network ‘tree’, used either for direct data access or data telemetry. This access node 
is connected remotely to a series of separate local nodes with their associated sensors/actuators. This is a hierarchy of nodes in which the highest level is a single 
“root node,” and this node is connected to one or many nodes in the lower level. Such a topology can contain many levels of nodes. The processing and power in 
nodes increase as the data moves from the branches of the tree toward the root node, allowing data to be processed close to where it is generated (an ‘edge 
computing’ approach). This topology is scalable, and its simple structure makes it easy to identify and isolate faults. Failure will not necessarily compromise the 
entire network. However, tree networks become increasingly difficult to manage as they become larger, and network edges are used as gateways.  

4. Mesh network: For this topology there are multiple access nodes, and the network has the potential for bi-directional intra and extra network communication. In 
this approach the nodes disseminate their own data and also act as relays to propagate the data from other connected nodes. There are two forms of mesh topology: 
a partially connected mesh, in which some nodes are connected to more than one other node, and a fully connected mesh, in which every node is connected to every 
other node in the mesh. Mesh networks are resilient and self-healing, as data can be routed along a different path if a node fails. However, fully connected mesh 
networks are not suitable for large sensor networks as the number of connections required becomes unmanageable. Partially connected mesh networks provide the 
self-healing capability of a fully connected network without the connection overhead. Mesh topologies are most commonly found in wireless networking based on 
the IEEE 802.15.4 standard and its derivatives [4]. This is potentially the most advanced network type as it allows an integrated dispersed network control system 
to be implemented.  
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both a faithful record from the network and the analytics approaches 
used as well as contains the needed (as defined by user groups) useful 
data. Associated with data legacy is the importance of maintaining 
appropriate levels of metadata being generated so as to enable dis-
covery and findability of data assets. Various international ISOs and 
related standards may be adopted, e.g., ISO19115 [17], Dublin Core 
[18], Data Catalog Vocabulary - DCAT [19], alongside national 
equivalent forms such as the UK GEMINI [20]. The notion of ‘FAIR’ 
data principles (Findability, Accessibility, Interoperability, and 
Reusability) has emerged as an axiom describing best practices for 
data producers and consumers [21]. 

2.3.2. Communication and data exchange 
Suitable mechanisms are required to stream, capture and provide 

data analysis. A current commonly used example of such a platform is 
Microsoft Azure. A typical processing chain takes captured data, ag-
gregates it and integrates it within a database. For Azure, this means 
routing sensor data to the cloud based ‘IoT Hub’, which can handle 
millions of messages from environmental sensors. Once received in the 
IoT Hub, Azure’s ‘Data Factory’ permits the data to be transformed (with 
data extract, transform and load processes), to be routed to different 
recipient applications e.g., data stores (NoSQL data stores such as blob 
and document file stores and data lakes, traditional SQL table stores and 
specialised stores), analytical environments (e.g., offline analytics, on-
line routine systems or the Microsoft Azure ‘Machine Learning Studio’) 
or to visualisation tools (such as the Microsoft ‘PowerBI dashboard’, able 
to generate web or mobile reports and event-driven push notifications). 

3. Generalised network architecture 

A schematic overview representation of the options within a 
dispersed heterogeneous environmental sensing network is presented in 
Fig. 3. This generalised network architecture model highlights some of 
the broad issues that need to be defined and addressed across a wide 
range of network topologies. This model can be configured in a number 
of ways and can be altered to suit the type of installation. It can also be 
altered during the life of the network (the network installation, expan-
sion and network draw down phases for example would each have 
different requirements). Fig. 3 identifies the top-level pathway and op-
tions from sensors/actuators to options for client facing interfaces via 
local and/or cloud analysis and storage, application frameworks and 

service oriental architectures. It also shows the underlying consider-
ations that need to be addressed (e.g., data security, governance and 
maintenance). Elements of this flexible generalised network model can 
in principle be implemented for a range of specific applications and 
three examples of this are presented here. Specifically, the “Reinvent the 
Toilet Challenge” (RTTC) and the Urban Observatory and Living Labo-
ratory initiatives at Cranfield University. 

4. Case studies 

The case studies presented here are selected to illustrate key ele-
ments of the generalised network architecture model. The first case 
study is a physical analytics test kit developed as part of the RTTC. The 
original purpose of the RTTC was to capture data during field testing for 
operational and functional feedback. As the challenge developed, this 
purpose was expanded to include feedback-based network control and 
the capture of in-situ environmental data. The aim is for the RTTC to 
develop into a combined sensing, control and analytics network system 
suitable for a range of purposes. The second case study is the Cranfield 
Urban Observatory (https://www.livinglab.ac.uk). The Cranfield Urban 
Observatory is part of a network of UK Urban Observatories funded 
through the UK Collaboratorium for Research on Infrastructure and 
Cities (UKCRIC) initiative. This network of networks builds on elements 
of the RTTC and is designed to monitor and characterise a wide variety 
of environmental factors, infrastructure systems and behaviours (e.g., 
water distribution, power grids, biodiversity, environmental data, street 
and pedestrian behaviour). The third case study considers the role of 
cloud-based storage and analytical platforms and the value of the pro-
viders for projects such as the Cranfield Urban Observatory, taking the 
UKCRIC ‘Data and Analytics Facility for National Infrastructure’ 
(DAFNI) platform as an example. 

4.1. RTTC analytics sensor test kit 

The Gates Foundation RTTC project aims to develop a solution for 
sanitation issues in low-income countries. A physical analytics test kit 
was developed as part of this project for monitoring and advanced 
process control suitable for a broad range of environments. The RTTC 
analytics framework is based on a mixture of network topologies to 
allow flexibility of use in the field. The primary aim of this analytics test 
kit is to capture data on RTTC field testing progress and to make this data 

Fig. 2. Overview of data governance considerations for emerging dispersed heterogeneous environmental sensing networks (excluding analysis).  
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available for remote access, analysis and presentation. This scope has 
expanded beyond immediate operational and functional analytics to 
include wider environmental data associated with a range of water, 
sanitation and hygiene initiatives [22]. This broadening of scope is to 
allow more integrated installation and improved operational control for 
each specific installation environment. 

The RTTC is based on development and adoption of sanitation 
technologies, suited for use in developing countries. These technologies 
are aimed to be independent of infrastructure for water and sewage as 
well as transforming collected waste into a useable product. The RTTC 
analytics sensor test kit was developed to generate and remotely capture 
operational and environmental data for RTTC field testing. The main 
parameters for the test kit are pH (used in the main RTTC reactor to 
trigger an internal water pump) and temperature (across the system e.g., 
trigger power use as well as safety features). The RTTC analytics sensor 
test kit has been designed to be physically robust and affordable with an 
associated cloud-based data support structure. The RTTC project infra-
structure was used to provide a trial input environment for the analytics 
test kit. The kit was used for advanced RTTC process control and data 
collection during field-testing. The primary aim of the analytics test kit is 
to capture data on field testing progress, to enable remote feedback 
driven control of the RTTC (for example power use or water circulation), 
and to make data on the RTTC and its wider environment available for 
remote access, analysis and presentation. This scope has expanded 
beyond operational and functional analytics (pH and T) to include wider 
environmental data associated with a broad range of water sanitation 
and hygiene initiatives (e.g., footfall, precipitation, environmental 
temperature, atmospheric pressure, air quality, etc.). The ultimate aim is 
to generate a complete analytics system and an end-to-end approach 
suitable for adaptation to other infrastructures or environments in need 
of monitoring and observation. Integral to this work is that this system 
remains consistent with the Gates Foundation Open Access Policy [23]). 
The analytics sensor test kit is an open landscape development tool 
which is target-driven, with a focus on system management, and pro-
duction of data analytics and functional outputs (e.g., the RTTC reactor 
control and power management). The analytics sensor test kit approach 

is designed to enable development of systems evaluate and manage a 
range of installations and systems in real-world use. 

There are three primary components to the RTTC analytics sensor 
test kit management framework: First is “operation”, being related to the 
sensors, instruments or machines used for implementation; Second is 
“environment”, referring primarily to the environmental media of the 
operational component (e.g., soil, air, people); Third is “communication”, 
relating to data flows and transport, signal fidelity, security and outputs 
(Fig. 4). Communication has an overarching role in network operation. 
This end-to-end system is designed to be open access and to provide 
output data products freely available to interested stakeholders. 

Fig. 3. Dispersed Heterogeneous Environmental Sensing Network architecture (adapted from Ref. [24]).  

Fig. 4. Management framework for the RTTC analytics sensor test kit showing 
key points for each aspect of the framework. 
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In addition, the purpose of the analytics test kit is to support the 
development of broad architecture capable of measurement, data 
assimilation and system communication with real-time, whole system 
process control during testing and operation of the RTTC. Fig. 5 shows a 
particular case schematic used as part of the RTTC project, being namely 
the “low-cost monitor and control analytic IoT test kit” used in the 
development and testing phases of the RTTC project at the project test 
site in Birla (India). 

The two main purposes of the sensors within the Birla RTTC network 
implementation are to: i). provide data for routine system control (via 
network actuators) and ii). provide information on the wider environ-
ment in which the network is located. Feedback to actuators can be 
automated either directly at the sensor itself (e.g., embedded opera-
tional firmware control) or from in-network control via the local nodes 
(if the sensor and local node are combined then these are in essence the 
same). The RTTC is geared towards the use of high numbers of low-cost 
sensors, located alongside a lower number of actuators and direct sensor 
inputs. Feedback to control actuators can be based on changes in 
network-sensed parameters, according to decision trees or lookup tables, 
each of which can be pre-defined (e.g., in the Birla installation, to in-
crease water flow or change setting in the electro chemical reactor, see 
Fig. 5, left panel). Feedback can be provided in-network, based on the 

local node, or in dispersed mesh networks from remote in-network 
nodes. Feedback from sub elements of the network can be used to 
change overall network behaviour or to change behaviour for selected 
parts of the network. For example, information from a network 
component remote from the system under control (e.g., a change in 
weather in one part of the network changing the RTTC drainage control 
across the network or just in the path of the weather change). Remote 
automated feedback can be also be input to the access node and there-
fore onwards to the network, by user control direct to the sensors, by 
actuators (e.g., locally connected laptop), or via telemetered input from 
remote users or off-line analysis systems. 

Data reporting between sensors is inherently very diverse, e.g., a 
simple analogue output within a defined voltage range, or complex 
tabulated data with associated operational “housekeeping” and cali-
bration or quality meta-information. Rates of data acquisition are also 
variable within the RTTC. Data needs to be stored locally (even if 
briefly) in some form before being made available via the access node as 
a rolling backup to prevent catastrophic information loss. The data 
storage format needs to be robust as at this initial stage there is no 
backup to the data being collected (data security is discussed in 2.3.1). 
The data generated by the components of the analytics system is often 
initially in a machine-readable form which is unconverted into a human 

Fig. 5. (Top) RTTC project “Low-cost monitor and control analytic IoT test kit” test architecture. (Bottom left) Birla Institute of Technology and Science field tests 
site. (Bottom right) Birla site schematic showing from top to bottom the toilets, settling tank, reed bed, electrochemical processing cell and processed wastewater 
outlet (adapted from Ref. [24]). 
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readable form or format. This is usually a function of the sensor oper-
ation itself (e.g., machine counts representing a capacitance value 
within a set range which is proportional to a humidity value). This data 
is then transmitted to the local node where it can be managed. Man-
agement operations can involve longer term storage, transformation (e. 
g., to human readable data or conversion using pre-set conversion ta-
bles), compilation (with input from other sensors/actuators of both 
similar and dissimilar types) and compression (for efficient long-term 
storage, preparation for access or telemetering to preserve band-
width). This managed data can then be made available for local access or 
telemetry. 

The RTTC local data reservoirs (Fig. 5) have variable storage re-
quirements and are flexible enough to enable linkages between a range 
of network sensor and actuator types as well as network distributions 
and feedback linkages (e.g., temperature within the RTTC body will be 
treated differently to temperature observations outside the RTTC 
installation block). Communications between devices and nodes use 
Message Queue Telemetry Transport. The RTTC implementation is dis-
cussed in detail in Williams et al. [24]. The purpose of this layer is to 
generate relatively lightweight combined messaging products for the 
local and or access nodes (where conventionally they would remain 
separate). 

The RTTC architecture is designed for local and remote access via the 
access nodes (automated or non-routine). Data transmission can be bi- 
directional, but the highest volumes of traffic will be from the sensor 
data local archives. This is considered to be network “Input” sensor data 
(Fig. 1). Telemetered communications from the RTTC access node will 
be based on the cloud-based NoSQL architecture, which is powerful, 
widely used and robust, holding documents at an entity level. Direct user 
control can also be used to access the stored cloud data. At this level the 
data can also be further managed with a combination of transformation, 
compilation and compression tasks. 

4.2. Cranfield Urban Observatory and Living Laboratory 

4.2.1. Introduction to Urban Observatories 
The types of dispersed heterogeneous sensing networks described, 

and employed in the RTTC, together with the increasing recognition of 
the need to understand complex urban systems in the face of contem-
porary challenges (e.g., climate change, sustainability, resilience), are 
helping to drive the development of Urban Observatories. The term 
‘Urban Observatory’ itself is not new (e.g., Ref. [25], but previously has 
been commonly focused on single discipline studies, lacking the mea-
surement, integration and analysis of data spanning the whole urban 
system and the Five Capitals, namely Natural, Human, Social, Built/-
manufactured and Financial [26]. However, recent developments in low 
cost IoT based dispersed heterogeneous environmental, infrastructure 
and social sensor configurations, are driving a growing interest in the 
creation of Urban Observatory systems to capture, analyse and present 
urban system behaviour across the Five Capitals. 

4.2.2. Cranfield University Urban Observatory 
The Cranfield University Urban Observatory, which is currently 

under development, is designed to allow users to monitor, characterise 
and compare a wide variety of environmental and infrastructure systems 
and behaviours. These currently include (but are not limited to): water 
distribution, power grids, biodiversity, pollution, environmental data, 
street networks, population density, biodiversity and pedestrian 
behaviour. The experience gained through the RTTC project is now 
being used to underpin the development of the Cranfield University 
Urban Observatory, which forms part of a wider network of six Urban 
Observatories in the UK funded through the UKCRIC [27]. The Cranfield 
University Urban Observatory is unique, being located on a 
self-contained site in a semi-rural location, representing a microcosm of 
a complex city system. The site not only includes traditional campus 
infrastructure (e.g., halls of residence, teaching and research facilities) 

but also complex infrastructure including an airport, combined heat and 
power plant, solar farm and wastewater experimental and treatment 
works for example. 

A recurrent theme in this Observatory is the adoption of the ‘digital 
twin’ as a design approach designed to create a ‘digital analogue’ of the 
systems in contention. The digital twin draws on the modal themes 
described in the RTCC design approach, using environmental sensors to 
capture facets of a complex system in real, or near-real time. This per-
mits extenuated management decisions to be adopted and trialled as 
scenarios, as well as recreation of circumstances leading up to particular 
events. A fundamental aspect of the Observatory is that the data arising 
from these assets will be brought together, using a common data plat-
form, within the envelope of the Cranfield University Urban Observa-
tory, and accompanied by a diverse range of analytical and 
dissemination tools and functionality. The Observatory project team 
identified these fundamental aspects as being critical to enabling 
research and generating knowledge. In addition, the Observatory has 
been designed to enable data sharing, for example with the wider 
UKCRIC Urban Observatories, and data users, via common data struc-
tures and APIs. 

In parallel with the increased interest in Urban Observatories has 
been the development of the concept of ‘Living Laboratories’. Whilst 
Living Laboratories are not Urban Observatories per se, they are 
increasingly the mechanism by which research questions are framed, 
facilitating interaction between stakeholders, students, academics and 
Professional Service Units (e.g., campus facilities), allowing any of these 
groups to generate research questions [28,29]. The Cranfield University 
Urban Observatory forms an integral part of the wider Cranfield Living 
Laboratory initiative. This is developing the use of the Cranfield Uni-
versity campus as a testbed for transformative technologies and ap-
proaches for the delivery of enhanced social, economic and 
environmental outcomes in response to major challenges such as future 
urban design, hybrid transport systems, provision of sanitation, well-
being and a range of issues associated with integrated infrastructure 
development. Here the data provided by the Urban Observatory is 
facilitating academic research, teaching, and operational 
decision-making in relation to such issues. 

Whilst still under development, the Urban Observatory and Living 
Laboratory initiatives at Cranfield University have had to grapple with 
many of the technical issues highlighted in this paper. In particular, the 
Urban Observatory seeks to integrate data from a wide array of differing 
sensor and data types, often communicating using differing protocols, 
data formats/structures and at widely varying volumes, and veracity. 
Experiences to-date suggest that identifying a ‘one-size-fits-all’ solution 
may prove challenging. Whilst the Urban Observatory has highlighted 
technical challenges, the Living Laboratory is highlighting wider 
emerging issues, particularly with regard to ethics and governance, 
which will assume increased importance as the deployment of dispersed 
heterogeneous environmental sensing networks, Urban Observatories, 
and Living Laboratories accelerates. 

4.3. Data and Analytics Facility for National Infrastructure 

A key to the success of IoT installations, such as the Urban Obser-
vatories, and Living Laboratories described is the ability to collate 
together in real or near real time the multitudinous data feeds arising at 
scale from the many environmental sensors in place, and the ability to 
present this data efficiently to analytical and visualisation tools. There 
are a number of pertinent challenges associated with this. Firstly, the 
volume, variety and velocity of the data arising require specialised 
hardware, network and data transport configurations. Secondly the 
bodies of data so collected need to be made accessible for further pro-
cessing, manipulation and output. Finally, in an information system 
seeking to explore and model potential scenario outcomes, for example 
the consequence of meteorological phenomena such as temperature 
variations on pedestrian flows, data from a range of differing sources 
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may need to be bought together and co-consulted. The DAFNI [30] 
operated by the UKRI Science and Technology Funding Council is one 
such ‘High Performance Computing’ platform able to hold hundreds of 
substantial ‘legacy’ data volumes, concerning themes such as infra-
structure networks, socio-demographic profiles and cadastral informa-
tion. Combining this capability with more real-time sources of 
infrastructure and environmental data opens a route to data-informed 
decision support tools. 

Once the data is received it needs to be held in a manner whereby the 
Digital Twinning modelling approaches adopted can permit a decou-
pling from the observed system, the tool being used to inform mainte-
nance and/or design for the future operation of the real system; the 
digital twin thus being run offline to permit improvements to the real 
system [31]. The DAFNI facility is being designed therefore to ingest 
substantive real-time sensor data to be placed alongside extant static 
data volumes, with all these being then made directly available to the 
suites of modelling and visualisation tools. The complexities as to which 
datasets should be interoperated together are forming the focus of an 
ongoing development to establish ‘infrastructure research ontologies’ 
(IROs), linked data themes that in concert can be used to support 
infrastructure modelling challenges, for example optimal and 
demand-driven siting of plant and infrastructure facilities. The IRO 
approach will facilitate operators being able to determine which data 
themes are appropriate for inclusion in a modelling approach. However, 
another challenge is the sheer volume and diversity of the data held and 
therefore, connected with this, will be the need to enable efficient data 
discovery through associated metadata records, drawing on standards 
such as DCAT [19]. Through the combination of these approaches, 
DAFNI aims to improve the efficiency, reliability and sustainability of 
infrastructure through better sharing and use of data, the exploitation of 
simulation and optimization techniques, and engagement with stake-
holders through visualisation. 

5. Conclusions and discussion 

The DEE, comprising a sensor architecture with a broad measure-
ment and actuation capability, coupled with a cloud-based computing 
approach is capable of assimilating environmental and human user in-
puts in real time, producing network relevant outputs for monitoring 
and managing environmental states. In this paper, we have explored 
different case studies to show advances in the field. With the RTTC an-
alytics test kit, progress to date has identified a number of areas of broad 
relevance to network design (taken to mean the selection of network 
components, their physical layout and their mode of operation) as well 
as corresponding potential solutions. The RTTC outcomes provide a 
demonstration of this type of ‘whole system of systems’ process control 
approach for networks up to and including dispersed mesh approaches. 
Many of the lessons learnt during the development of the RTCC analytics 
test kit are more broadly applicable and will influence current activities 
such as the ongoing evolution of the Cranfield University Living 
Laboratory. 

The Cranfield University Urban Observatory extends the scope of the 
RTTC in the laboratory context of a functioning and characterised 
campus/semi urban environment. The RTTC framework will be 
deployed as part of the Cranfield Urban Observatory and so will be in-
tegrated with a wide variety of other Urban Observatory applications 
with the aim of exploring avenues for potential inclusion of viable and 
valuable extension of the RTTC in the field. The quality of low-cost 
sensors is improving rapidly, and many are already suitable for appli-
cations such indoor and outdoor air quality [32]. Their greater flexibility 
and lower cost mean that they can be deployed in a ubiquitous manner, 
and used to address many more questions than conventional, more 
expensive instruments could, such as those which were developed spe-
cifically to meet regulatory needs. The corresponding rise in complexity 
in new sources of data, derived in part from associated reduction in the 
costs of both the generation and storage of data over the last decade, has 

in turn led to the creation, and growing ease of access to substantive 
datasets. Corresponding predictive analytics, machine learning and 
stream analytics are required to mine and reveal patterns and clusters in 
voluminous, fast-changing, diverse, structured and unstructured data 
sources to develop data intelligence. These big data approaches offer a 
wide range of opportunities by embracing and extending traditional 
informatics approaches, allowing a level of data processing that would 
traditionally have been unachievable [33] and yet which are now 
becoming increasingly necessary. Facilities such as the DAFNI can then 
be utilised to enable the data arising from multitudinous networks of 
infrastructure and environmental sensors. They can be deployed 
alongside substantive ‘data lakes’ of extant data, and to thence be made 
available to the advanced analytical and visualisation tools. The tools 
are used to observe complex systems, investigate the impact of partic-
ular mitigation measures, and have the potential to provide a basis for 
understanding previous patterns of outcomes through ‘hindcasting’ 
approaches, offer near-real-time information and feedback systems 
through ‘nowcasting’ approaches, as well as supporting exploratory 
future scenario modelling through ‘futurecasting’ approaches. 
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