398 research outputs found

    A study on quality assessment for medical ultrasound video compressed via HEVC

    Get PDF

    Psychophysiology-based QoE assessment : a survey

    Get PDF
    We present a survey of psychophysiology-based assessment for quality of experience (QoE) in advanced multimedia technologies. We provide a classification of methods relevant to QoE and describe related psychological processes, experimental design considerations, and signal analysis techniques. We summarize multimodal techniques and discuss several important aspects of psychophysiology-based QoE assessment, including the synergies with psychophysical assessment and the need for standardized experimental design. This survey is not considered to be exhaustive but serves as a guideline for those interested to further explore this emerging field of research

    Designing Functionally Selective Noncatechol Dopamine D1 Receptor Agonists with Potent in Vivo Antiparkinsonian Activity

    Get PDF
    Dopamine receptors are important G protein-coupled receptors (GPCRs) with therapeutic opportunities for treating Parkinson's Disease (PD) motor and cognitive deficits. Biased D1 dopamine ligands that differentially activate G protein over ÎČ-arrestin recruitment pathways are valuable chemical tools for dissecting positive versus negative effects in drugs for PD. Here, we reveal an iterative approach toward modification of a D1-selective noncatechol scaffold critical for G protein-biased agonism. This approach provided enhanced understanding of the structural components critical for activity and signaling bias and led to the discovery of several novel compounds with useful pharmacological properties, including three highly GS-biased partial agonists. Administration of a potent, balanced, and brain-penetrant lead compound from this series results in robust antiparkinsonian effects in a rodent model of PD. This study suggests that the noncatechol ligands developed through this approach are valuable tools for probing D1 receptor signaling biology and biased agonism in models of neurologic disease

    Defining Structure-Functional Selectivity Relationships (SFSR) for a Class of Non-Catechol Dopamine D1 Receptor Agonists

    Get PDF
    G protein-coupled receptors (GPCRs) are capable of downstream signaling through distinct noncanonical pathways such as ÎČ-arrestins in addition to the canonical G protein-dependent pathways. GPCR ligands that differentially activate the downstream signaling pathways are termed functionally selective or biased ligands. A class of novel non-catechol G protein-biased agonists of the dopamine D1 receptor (D1R) was recently disclosed. We conducted the first comprehensive structure-functional selectivity relationship study measuring GS and ÎČ-arrestin2 recruitment activities focused on four regions of this scaffold, resulting in over 50 analogs with diverse functional selectivity profiles. Some compounds became potent full agonists of ÎČ-arrestin2 recruitment, while others displayed enhanced GS bias compared to the starting compound. Pharmacokinetic testing of an analog with an altered functional selectivity profile demonstrated excellent blood-brain barrier penetration. This study provides novel tools for studying ligand bias at D1R and paves the way for developing the next generation of biased D1R ligands. Copyright © 2019 American Chemical Society

    The Fueling and Evolution of AGN: Internal and External Triggers

    Full text link
    In this chapter, I review the fueling and evolution of active galactic nuclei (AGN) under the influence of internal and external triggers, namely intrinsic properties of host galaxies (morphological or Hubble type, color, presence of bars and other non-axisymmetric features, etc) and external factors such as environment and interactions. The most daunting challenge in fueling AGN is arguably the angular momentum problem as even matter located at a radius of a few hundred pc must lose more than 99.99 % of its specific angular momentum before it is fit for consumption by a BH. I review mass accretion rates, angular momentum requirements, the effectiveness of different fueling mechanisms, and the growth and mass density of black BHs at different epochs. I discuss connections between the nuclear and larger-scale properties of AGN, both locally and at intermediate redshifts, outlining some recent results from the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte

    Formation and Evolution of Supermassive Black Holes

    Full text link
    The correlation between the mass of supermassive black holes in galaxy nuclei and the mass of the galaxy spheroids or bulges (or more precisely their central velocity dispersion), suggests a common formation scenario for galaxies and their central black holes. The growth of bulges and black holes can commonly proceed through external gas accretion or hierarchical mergers, and are both related to starbursts. Internal dynamical processes control and regulate the rate of mass accretion. Self-regulation and feedback are the key of the correlation. It is possible that the growth of one component, either BH or bulge, takes over, breaking the correlation, as in Narrow Line Seyfert 1 objects. The formation of supermassive black holes can begin early in the universe, from the collapse of Population III, and then through gas accretion. The active black holes can then play a significant role in the re-ionization of the universe. The nuclear activity is now frequently invoked as a feedback to star formation in galaxies, and even more spectacularly in cooling flows. The growth of SMBH is certainly there self-regulated. SMBHs perturb their local environment, and the mergers of binary SMBHs help to heat and destroy central stellar cusps. The interpretation of the X-ray background yields important constraints on the history of AGN activity and obscuration, and the census of AGN at low and at high redshifts reveals the downsizing effect, already observed for star formation. History appears quite different for bright QSO and low-luminosity AGN: the first grow rapidly at high z, and their number density decreases then sharply, while the density of low-luminosity objects peaks more recently, and then decreases smoothly.Comment: 31 pages, 13 figures, review paper for Astrophysics Update

    A Study of the Radiative Ke3 Decay and Search for Direct Photon Emission with the KLOE Detector

    Full text link
    We present a measurement of the ratio R = \Gamma(\keg;\Estar>30\mev,\qstar>20^\circ)//\Gamma(\kegf)andafirstmeasurementofthedirectemissioncontributioninKLsemileptonicdecays.ThemeasurementisdoneattheDAFNEphi−factoryselectingphi−>KLKSdecayswiththeKLOEdetector.Weuse328pb−1 and a first measurement of the direct emission contribution in KL semileptonic decays. The measurement is done at the DAFNE phi-factory selecting phi->KL KS decays with the KLOE detector. We use 328 pb^{-1} of data corresponding to about 3.5 million Ke3(g) events and about 9000 radiative events. Our result is R=(924 +/- 23(stat) +/-16(syst)10^{-5} for the branching ratio and X=-2.3 +/- 1.3(stat) +/- 1.4(syst) for the parameter describing direct emission.Comment: 8 pages, 7 figure

    Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    Get PDF
    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.Comment: submitted to Astroparticle Physic

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore