1,516 research outputs found

    Logarithmic Moduli Spaces for Surfaces of Class VII

    Full text link
    In this paper we describe logarithmic moduli spaces of pairs (S,D) consisting of minimal surfaces S of class VII with positive second Betti number b_2 together with reduced divisors D of b_2 rational curves. The special case of Enoki surfaces has already been considered by Dloussky and Kohler. We use normal forms for the action of the fundamental group of the complement of D and for the associated holomorphic contraction germ from (C^2,0) to (C^2,0).Comment: Minor correction of the dimension of the moduli spac

    Kinetic characterization of solvents for CO2 capture under partial oxy-combustion conditions

    Get PDF
    Partial oxy-combustion is proposed as a new carbon capture concept based on the use of oxygen-enriched air as an oxidizer instead of air during the combustion stage followed by a CO2 chemical absorption. This novel approach has showed potential advantages compared with other CCS technologies that may lead to a further reductions of the energy penalties related to the CO2 separation process. In this work, a lab-scale apparatus operating under semi-batch conditions was used for the kinetic evaluation of potassium carbonate (K2CO3), aminoethylpiperazine (AEP) and methyldiethanolamine (MDEA) and monoethanolamine (MEA). Four experiments were set for each solvent where the flue gas composition varied from 15%v/v (post-combustion) to 60%v/v. In general, the use of a more CO2 concentrated flue gas enhanced the CO2 absorption process and the kinetic was significantly improved under partial oxy-combustion conditions. The CO2 loading also increased in the presence of a more CO2 concentrated flue gas for each solvent tested. Those results strengthened partial oxy-combustion as a potential CCS approach in comparison with more mature technologies such as post-combustion and oxy-combustion.Ministerio de Economía y Competitividad CTM-2014-58573-

    NaIrO3 - A pentavalent post-perovskite

    Full text link
    Sodium iridium(V) oxide, NaIrO3, was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO3, the much-studied structural analogue of the high-pressure post-perovskite phase of MgSiO3. Among the oxide post-perovskites, NaIrO3 is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO6 octahedra separated by layers of NaO8 bicapped trigonal prisms. NaIrO3 shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides.Comment: 22 pages, 5 figures. Submitted to Journal of Solid State Chemistr

    Herschel observations of EXtraordinary Sources: Analysis of the full Herschel/HIFI molecular line survey of Sagittarius B2(N)

    Get PDF
    A sensitive broadband molecular line survey of the Sagittarius B2(N) star-forming region has been obtained with the HIFI instrument on the Herschel Space Observatory, offering the first high-spectral resolution look at this well-studied source in a wavelength region largely inaccessible from the ground (625-157 um). From the roughly 8,000 spectral features in the survey, a total of 72 isotopologues arising from 44 different molecules have been identified, ranging from light hydrides to complex organics, and arising from a variety of environments from cold and diffuse to hot and dense gas. We present an LTE model to the spectral signatures of each molecule, constraining the source sizes for hot core species with complementary SMA interferometric observations, and assuming that molecules with related functional group composition are cospatial. For each molecule, a single model is given to fit all of the emission and absorption features of that species across the entire 480-1910 GHz spectral range, accounting for multiple temperature and velocity components when needed to describe the spectrum. As with other HIFI surveys toward massive star forming regions, methanol is found to contribute more integrated line intensity to the spectrum than any other species. We discuss the molecular abundances derived for the hot core, where the local thermodynamic equilibrium approximation is generally found to describe the spectrum well, in comparison to abundances derived for the same molecules in the Orion KL region from a similar HIFI survey.Comment: Accepted to ApJ. 64 pages, 14 figures. Truncated abstrac

    Integration of Multi-Stage Membrane Carbon Capture Processes to Coal-Fired Power Plants using highly permeable polymers

    Get PDF
    Membrane separation systems could be a feasible option as post combustion carbon capture technologies in coal-fired power plants. Recent advancement on membrane materials based on microporous super glassy polymers could improve significantly the capture process but the properties of the materials have to guide the design of the separation stage. In this study an advanced hybrid two-stage membrane process employing one of the most permeable polymer known (PIM-1) is retrofitted to a coal fired power plant and the process is analysed in terms of energy requirement and cost performance. The results are based on the use of an in-house detailed membrane module model implemented in UniSim Design®, the Honeywell process flowsheet simulator. The study indicates the need for advanced configuration in order for highly permeable membranes to be competitive with more mature technologies in terms of capture cost. The effect of ageing and impurities on the material is also investigated in order to predict the decline in process performance over time and suggest a timeproof design. Keywords: Membranes, PIMs, Post-combustion, LCO

    Tibet, the Himalaya, Asian monsoons and biodiversity - In what ways are they related?

    Get PDF
    Prevailing dogma asserts that the uplift of Tibet, the onset of the Asian monsoon system and high biodiversity in southern Asia are linked, and that all occurred after 23 million years ago in the Neogene. Here, spanning the last 60 million years of Earth history, the geological, climatological and palaeontological evidence for this linkage is reviewed. The principal conclusions are that: 1) A proto-Tibetan highland existed well before the Neogene and that an Andean type topography with surface elevations of at least 4.5 km existed at the start of the Eocene, before final closure of the Tethys Ocean that separated India from Eurasia. 2) The Himalaya were formed not at the start of the India-Eurasia collision, but after much of Tibet had achieved its present elevation. The Himalaya built against a pre-existing proto-Tibetan highland and only projected above the average height of the plateau after approximately 15 Ma. 3) Monsoon climates have existed across southern Asia for the whole of the Cenozoic, and probably for a lot longer, but that they were of the kind generated by seasonal migrations of the Inter-tropical Convergence Zone. 4) The projection of the High Himalaya above the Tibetan Plateau at about 15 Ma coincides with the development of the modern South Asia Monsoon. 5) The East Asia monsoon became established in its present form about the same time as a consequence of topographic changes in northern Tibet and elsewhere in Asia, the loss of moisture sources in the Asian interior and the development of a strong winter Siberian high as global temperatures declined. 6) New radiometric dates of palaeontological finds point to southern Asia's high biodiversity originating in the Paleogene, not the Neogene

    The cometary composition of a protoplanetary disk as revealed by complex cyanides

    Full text link
    Observations of comets and asteroids show that the Solar Nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface, seeding its early chemistry. Unlike asteroids, comets preserve a nearly pristine record of the Solar Nebula composition. The presence of cyanides in comets, including 0.01% of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can be readily explained by a combination of gas-phase chemistry to form e.g. HCN and an active ice-phase chemistry on grain surfaces that advances complexity[3]. Simple volatiles, including water and HCN, have been detected previously in Solar Nebula analogues - protoplanetary disks around young stars - indicating that they survive disk formation or are reformed in situ. It has been hitherto unclear whether the same holds for more complex organic molecules outside of the Solar Nebula, since recent observations show a dramatic change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and HC3N) in the protoplanetary disk around the young star MWC 480. We find abundance ratios of these N-bearing organics in the gas-phase similar to comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of the Solar Nebula was not unique.Comment: Definitive version of the manuscript is published in Nature, 520, 7546, 198, 2015. This is the author's versio

    Process intensification for post combustion CO₂ capture with chemical absorption: a critical review

    Get PDF
    The concentration of CO₂ in the atmosphere is increasing rapidly. CO₂ emissions may have an impact on global climate change. Effective CO₂ emission abatement strategies such as carbon capture and storage (CCS) are required to combat this trend. Compared with pre-combustion carbon capture and oxy-fuel carbon capture approaches, post-combustion CO₂ capture (PCC) using solvent process is one of the most mature carbon capture technologies. There are two main barriers for the PCC process using solvent to be commercially deployed: (a) high capital cost; (b) high thermal efficiency penalty due to solvent regeneration. Applying process intensification (PI) technology into PCC with solvent process has the potential to significantly reduce capital costs compared with conventional technology using packed columns. This paper intends to evaluate different PI technologies for their suitability in PCC process. The study shows that rotating packed bed (RPB) absorber/stripper has attracted much interest due to its high mass transfer capability. Currently experimental studies on CO₂ capture using RPB are based on standalone absorber or stripper. Therefore a schematic process flow diagram of intensified PCC process is proposed so as to motivate other researches for possible optimal design, operation and control. To intensify heat transfer in reboiler, spinning disc technology is recommended. To replace cross heat exchanger in conventional PCC (with packed column) process, printed circuit heat exchanger will be preferred. Solvent selection for conventional PCC process has been studied extensively. However, it needs more studies for solvent selection in intensified PCC process. The authors also predicted research challenges in intensified PCC process and potential new breakthrough from different aspects

    Effect of the horizontal aspect ratio on thermocapillary convection stability in annular pool with surface heat dissipation

    Full text link
    [EN] A linear stability analysis of the thermoconvective problem of a thin liquid film contained in an annular domain has been conducted. The influence of the horizontal aspect ratio on the solution has been considered by keeping a fixed external wall while the internal radius of the annular domain was modified. The parameter used in the study, Gamma(h), has been defined as the ratio of the internal radius to the domain depth. The other control parameter of the study is the Prandtl number ranging from 0.7 to 50, i.e. characteristic of fluids as air to n-butanol. The study has been performed for different Bond (Bo) regimes ranging from 0.0 for surface tension dominated flows to 67 for buoyancy dominated ones. Three different kind of bifurcations are found in the Gamma(h) - Pr plane for large Bonds, while for low Bonds only two of them appear. In the case of pure buoyancy or surface tension flows, for every Gamma(h) there exists a Prandtl number such that oscillatory and stationary coexist in a co-dimension two bifurcation point. These transitions show a strong dependency with the Bond number. Indeed, the lower transition disappears for low Bo and the upper one disappears with intermediate Bo values. Furthermore, there is a non-linear dependency of the number of structures of the growing bifurcation with Gamma(h). These co-dimension two lines show a strong dependency with Bo. Firstly, looking at the frontier between HWI and LR regions, for large Bo numbers, Pr increases with Gamma(h), while for low Bo the trend is reversed. Additionally, this transition only appears in the extreme Bo cases, for the central values of the considered, no transition is found. Similarly, the second transition found only appears for Bo larger than 30.SH and MJPQ work have been supported by project RTI2018-102256-B-I00 of Mineco/FEDER. PF work has been partially supported by the Spain's National Research and Development Plan (Project ESP2016-75887) and by the CHEOPS project (Grant Agreement 730135). This work was supported by a generous grant of computer time from the supercomputing center of the UPV.López-Núñez, E.; Pérez Quiles, MJ.; Fajardo, P.; Hoyas, S. (2020). Effect of the horizontal aspect ratio on thermocapillary convection stability in annular pool with surface heat dissipation. International Journal of Heat and Mass Transfer. 148:1-8. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119140S1814
    corecore