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Prevailing dogma asserts that the uplift of Tibet, the onset of the Asian monsoon system and high
biodiversity in southern Asia are linked, and that all occurred after 23 million years ago in the Neogene.
Here, spanning the last 60 million years of Earth history, the geological, climatological and palae-
ontological evidence for this linkage is reviewed. The principal conclusions are that: 1) A proto-Tibetan
highland existed well before the Neogene and that an Andean type topography with surface elevations of
at least 4.5 km existed at the start of the Eocene, before final closure of the Tethys Ocean that separated
India from Eurasia. 2) The Himalaya were formed not at the start of the India—Eurasia collision, but after
much of Tibet had achieved its present elevation. The Himalaya built against a pre-existing proto-Tibetan
highland and only projected above the average height of the plateau after approximately 15 Ma. 3)
Monsoon climates have existed across southern Asia for the whole of the Cenozoic, and probably for a lot
longer, but that they were of the kind generated by seasonal migrations of the Inter-tropical Convergence
Zone. 4) The projection of the High Himalaya above the Tibetan Plateau at about 15 Ma coincides with
the development of the modern South Asia Monsoon. 5) The East Asia monsoon became established in its
present form about the same time as a consequence of topographic changes in northern Tibet and
elsewhere in Asia, the loss of moisture sources in the Asian interior and the development of a strong
winter Siberian high as global temperatures declined. 6) New radiometric dates of palaeontological finds

point to southern Asia's high biodiversity originating in the Paleogene, not the Neogene.
Copyright © 2017 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

climatological and biological context. The biodiversity we see
around us today (but are rapidly destroying) is an expression of the

Southern Asia hosts several of Earth's most important biodi-
versity hotspots (Myers et al., 2000). These include the Indo-Burma
(which spans the Himalaya and Hengduan Mountains, Myanmar,
Thailand, Vietnam, Laos and southwestern China), the Western
Ghats and Sri Lanka, and South Central China hotspots (Fig. 1).
Three things characterize these areas of high biodiversity and
endemism: 1) they occupy low (>35°N) latitudes, 2) they are in
areas that include complex and often considerable topographic
relief, 3) they all experience Asian monsoon climates.

To understand the evolution of these unique diverse biotas we
need to look back in time and consider their geological,

* School of Environment, Earth and Ecosystem Sciences, The Open University,
MK7 6AA, UK.
E-mail address: r.a.spicer@open.ac.uk.
Peer review under responsibility of Editorial Office of Plant Diversity.

http://dx.doi.org/10.1016/j.pld.2017.09.001

dynamic interplay between topography, climate and life processes
that operate over geological as well as biological timescales and is
just flicker in the history of life; only a transient ripple in the river of
gene flow through time.

The aim of this paper, first given as a plenary keynote talk at the
2017 Association for Tropical Biology and Conservation conference,
March 25—28th, Xishuangbanna Tropical Botanical Garden,
Yunnan, China, is to review and examine current evidence for
topographic, climatic and palaeontological change across southern
Asia for the last 60 million years in order to address the following
questions:

i) Paying particular attention to major features such as Tibet
and the Himalaya, how and when did the regional topog-
raphy evolve?

2468-2659/Copyright © 2017 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Map of the world showing areas of exceptional biodiversity ‘hotspots’ based on Myers et al. (2000).

ii) How and when did the Asian monsoon systems develop, and
were the origins of the modern monsoon systems concurrent
with the uplift of Tibet and/or the Himalaya?

iii) How old are the Asian biodiversity ‘hotspots’, and how do
they relate to the development of the Asian monsoon
systems?

First, however, it is useful to examine, briefly and simply, the
links between topography, climate heterogeneity in space and time,
and biodiversity.

1.1. What is so special about low-latitude mountainous regions that
might contribute to high biodiversity and endemism?

Many, but not all, of the world's areas of high biodiversity and
endemism occur in places that encompass mountainous regions. In
addition to the areas considered in this work there are, for example,
the Tropical Andes and Central Chile, the Caucasus, the Sierra
Nevada and Coast Ranges of the California Floristic province and
New Zealand (Fig. 1). In all these regions complex topographies
juxtapose, at the sub-kilometre scale, profoundly different local
climates as a function of aspect and altitude, and inevitably in
mountainous landscapes, complex geology. Geology, slope and
climate heterogeneity give rise to a patchwork of soil types. Arising
from this small-scale granular environmental mosaic is close-
proximity niche diversity.

This close-proximity niche diversity is also accompanied in
many areas of high biodiversity by seasonally varying climates.
Returning to Myers et al. (2000) (Fig. 1) one might cite the winter-
wet summer-dry climates of the Mediterranean Basin, The Cali-
fornia Floristic Province, or Central Chile hotspots, while seasonal
migrations of the thermal equator and the associated Inter-tropical
Convergence Zone (ITCZ) bring summer-wet, winter-dry
monsoonal regimes to the tropics in all but an ever-wet zone
centred on the Equator. Across southern Asia biodiversity hotspots
fall under the influence of seasonally wet and dry regimes driven
either by seasonal migrations of the ITCZ (ITCZ monsoon climates)
or seasonal ITCZ migrations modified by land-sea thermal contrast
and topography (modified monsoon climates) (Spicer et al., 2016).
Plants and animals across southern Asia have to be adapted to

strong seasonal variations in rainfall, and on an annual basis
tolerate water saturated soils and atmosphere for several months
and extreme drought for several months. These extremes in water
availability are often accompanied by marked variations in tem-
perature and more complex climate metrics that have profound
influences on photosynthesis, such as vapour pressure deficit (the
difference between saturated vapour pressure and actual vapour
pressure VPD) (Singh, 2010).

Global biodiversity hotspots are not confined to mountainous
regions and seasonal climates. Many regions of high biodiversity
identified by Myers et al. (2000) occur on islands. Examples here
include the Caribbean, Polynesia and Micronesia, Madagascar, New
Zealand and across southern Asia there is Sri Lanka and the islands
making up Sundaland, Wallacea and the Philippines (Fig. 1). In
these areas various degrees of isolation operating over varying
timescales play a role in speciation (e.g. Cowie and Holland, 2008;
Darwin, 1860; Emerson, 2008; Presgraves and Glor, 2010;
Whittaker et al., 2008). Mountainous regions host many so called
‘sky islands’ (e.g. Dodge, 1943; McLaughlin, 1994) where similar
isolating mechanisms, and refugia, operate.

So far I have concentrated on the spatial component of niche
diversity, but time is also an important ingredient in speciation.
With time comes climate change. Superimposed on seemingly
stochastic inter-annual fluctuations in weather, climate (meteoro-
logical variables averaged over 30 years or more) changes also occur
over thousands of years (kyrs) due to repeated changes in the shape
of Earth's orbit around the Sun, changes in the angle of inclination of
Earth's rotational axis with respect to the orbital plane, or proces-
sion of that axis. These so-called Milankovitch—Croll cycles (Croll,
1875; Milankovic, 1998) are highly predictable and have also oper-
ated throughout much of Earth history (Hays et al., 1976).

This millennial scale cyclicity is also superimposed on longer-
term (millions of years) climate variations (e.g. Frakes et al., 1992;
Zachos et al., 2001) due to changes in atmospheric composition,
positions of the continents etc. In mountainous regions both short-
and long-term climate variability generates a ‘speciation pump’:
repeated up and down slope niche migration results in vagility-
dependent repeated isolation and re-mixing of gene pools.

Mountainous regimes such as those across much of southern
Asia therefore combine all the main properties of global
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biodiversity hotspots: seasonal climate variation pre-adapts or-
ganisms to tolerate climate extremes and close proximity niche
diversity is accompanied by repeated episodes of genetic isolation
in ‘sky islands’ during warm climate phases, followed by down-
slope migration to mingle and hybridize in the lowlands during
cool climate phases. The combination of complex topography and
varying climates turns areas such as southern Asia into ‘biodiversity
factories’.

1.2. Monsoons and biodiversity

A long favoured model for monsoon and biodiversity evolution
is based on the concept that Tibet acts as a driver of the Asian
monsoon system and any change in the surface height or extent
of Tibet will affect monsoon intensity and, in turn, biotic evolu-
tion. This model consists of three elements: 1) the Tibetan plateau
is exclusively the result of the Indo-Eurasian collision, 2) that
Asian monsoon circulation was created by a Neogene (younger
than 23 myrs) uplift of the plateau resulting from that collision,
and that 3) these changes had a major impact of the evolution of
the Asian biota and, in particular, widespread Miocene speciation.
This is a common concept that has become a self-sustaining
explanation for Miocene phylogenetic differentiation across
large parts of Asia. As shown by Renner (2016), this concept is
flawed. A major problem with this concept is that geological ev-
idence shows that both an elevated Tibet and the Asian monsoon
system predate the Miocene and even the onset of the India—Asia
collision.

2. The elevation history of Tibet

The Himalaya are often shown to be the first expression of the
collision between India and Eurasia (e.g. Favre et al., 2015). The
exact date of the onset of this collision is uncertain, but in their
extensive review Wang et al. (2014) give a date of 55 Ma + 10 Ma,
close to the beginning of the Eocene. At 45—35 Ma Favre et al.
(2015), drawing on the work of Li and Fang (1999), Mulch and
Chamberlain (2006) and Rowley and Currie (2006), among
others, show an elevated Himalaya and by 25 Ma an elevated
southern Tibet. Subsequently the Tibetan Plateau is supposed to
have risen to its present mean surface elevation of ~5 km a.m.s.1,
progressively developing in a northeasterly direction such that by
15 Ma all but the northeastern part of the plateau was elevated to
close to its present height.

This model of plateau uplift is, however, contradicted by a large
body of evidence brought together in the review of Wang et al.
(2014). The model synthesised in Wang et al. (2014) envisages an
elevated proto-Tibetan upland before the arrival of India (Fig. 2). In
some respects this model reprises the idea, developed around 30
years ago, that some parts Tibet were at an elevation of at least 3 km
between 45 and 30 Ma (Burg and Chen, 1984; Dewey et al., 1989;
England and Searle, 1986; Murphy et al., 1997). However this pre-
collision elevated Tibet idea subsequently lost favour, subsumed
by a more stepwise SW—NE model of plateau evolution (e.g. Mulch
and Chamberlain, 2006; Rowley and Currie, 2006; Tapponnier et al.,
2001), or the assumption that the Tibetan Plateau behaved more or
less as a single entity that rose as one block in the late Miocene
around 10—8 Ma (England and Houseman, 1989; Harrison et al.,
1992; Molnar et al., 1993; Platt and England, 1994). The timing of
this late Miocene rise was linked to an observed intensification of
the South Asian monsoon at this time (An et al., 2001; Derry and
France Lanord, 1996; Kroon et al., 1991). This supposed rapid up-
lift was inferred from a geophysical model that envisaged thermal
removal of the relatively cold, and therefore dense, thickened
lithosphere beneath Tibet arising from the India—Eurasia collision.

As this cold dense Tibetan ‘ballast’ fell away Tibet would corre-
spondingly float upwards. One consequence of such a recent rapid
uplift to near present surface elevation would have been the onset
of gravitational collapse of the plateau that, given the on-going
northward compression derived from the continued northward
movement of India, would be constrained to occur in an East—West
direction. However, it has been clear for some time that E—W
extension was occurring before 10 Ma (Coleman and Hodges, 1995),
and evidence for the onset of this extension is in the formation of
N-S trending dykes and normal faulting, which in south central
Tibet have been dated not at 10 Ma, but ~18.3 + 2.7 Ma (Williams
et al., 2001) and some N—S trending faults and dykes are even as
old as Eocene (~47—38 Ma) (Lan et al., 2007; Yang et al., 2008;
Wang et al., 2010).

The concept of a rapid recent uplift of Tibet at 10—8 Ma was also
compromised severely by the finding that an area of south central
Tibet known as the Namling-Oiyug Basin, which sits near the
southern margin of a tectonic block known as the Lhasa Terrane
(Fig. 3), was already near its present elevation at 15 Ma in the mid
Miocene (Currie et al., 2005; Spicer et al., 2003) (Fig. 4). Subse-
quently a wealth of evidence has confirmed these high elevations
(Currie et al., 2016; Khan et al., 2014) and shown that numerous
parts of Tibet, including both the Lhasa Terrane and its immediate
northern neighbour the Qiangtang Terrane, have been high
(>4.5 km) since at least 45 Ma (Xu et al., 2013; works reviewed in
Ding et al., 2014; Wang et al., 2014).

The existence of an old Paleogene (66—23 Ma) proto-Tibetan
upland is supported by an expanding body of palaeoaltimetric
data derived primarily from isotopic studies. Put simply, the
principle behind isotope-based estimates of surface elevation is
based on a Rayleigh distillation model in which heavy isotopes
preferentially rain out of parcels of air as those parcels are forced to
rise on encountering a mountain front. In the case of oxygen iso-
topes the heavy isotope 80 rains out more than the lighter 0, so
parcels of rising air are progressively depleted in 80 but enriched
with 160. The result of this fractionation is that on the windward
side of a mountain the higher the elevation at which precipitation
occurs the greater the proportion of the light isotope of oxygen
('%0) that is contained in meteoric water (rain and snow) (e.g.
Currie et al., 2005; Garzione et al., 2000; Rowley et al., 2001). Any
isotopes preserved in sediments that accurately reflect meteoric
water can therefore be used to estimate palaeo-elevation. There
are of course many caveats and assumptions associated with this
technique, but the principle seems to work well when there is a
single mountain range with moist air consistently delivered to the
windward side. This ideal situation applies to the Himalaya, which
receive summer moist air from the Indian Ocean. However, this
simple distillation model breaks down on the leeward side over an
extensive highland, such as the Tibetan Plateau. Here multiple
evaporation (from plateau lakes, vegetation, soils etc.) and pre-
cipitation cycles increasingly favour moisture in clouds (and pre-
cipitation) enriched with the light '°0 isotope, which can lead to
overly high surface elevation estimates. A more complete review of
isotope palaeoaltimetry is given in Mulch (2016), and Mulch in-
cludes a comment on the necessity of factoring in isotopic frac-
tionation due to transpiration as well as evaporation. To do that
successfully, a detailed understanding of the palaeovegetation is
required.

It follows then that when using isotopic palaeoaltimeters the
palaeo-surface elevation of the proto-Tibetan highland may be
exaggerated in the highland interior. However, at locations close to
the southern margin of Tibet, where the simple distillation model
does apply, Eocene surface heights of the ancient Gangdese
Mountains (part of the southern Lhasa Terrane) have been esti-
mated at ~4.5 km (Ding et al.,, 2014) (Fig. 2).
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Fig. 2. South—North transect from India to the Qaidam basin, China, showing likely surface elevations at three time slices: 45—35 Ma, 23—15 Ma and 8 Ma to present based on Ding

et al. (2017, 2014), Wang et al. (2014).

Additional evidence that a Paleogene proto-Tibetan highland
existed comes from palaesomagnetism. The ancient latitudinal po-
sition of a rock body can be determined from the direction of
preserved ancient magnetism. Using this technique Tong et al.
(2017) have shown that the Lhasa Terrane moved from
7.5 + 8.5°N at 64—60 Ma to 13.7 + 7.3°N at 55 Ma, and then to
16.5 + 5.7°N at 53 Ma. This demonstrates considerable crustal
shortening prior to 53 Ma (possibly as much as 1600 km) that must
have been associated with mountain building. Subsequently an

additional ~1300 + 410 km of shortening seems to have been
accommodated by southeastward extrusion of the Qiangtang
Terrane, apparently beginning in the early Oligocene, and impact-
ing on the development of what we now call the Hengduan
Mountains.

The central area of the present day Tibetan Plateau is
remarkably flat (Fielding et al., 1994; Liu-Zheng et al., 2008) and
large parts of it appear not to have undergone any compressional
deformation since the early Miocene (Wang et al., 2014; Wu et al,,

Fossil Localities

SAM summer winds

Westerlies

EAM summer winds

ST

Fig. 3. Map of southern Asia showing the major tectonic terranes and features referred to in the text, the positions of key fossil localities referred to in the text, and the directions of
major wind patterns associated with the South Asia Monsoon and East Asia Monsoon in summer and winter Westerlies.
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Fig. 4. Graph showing elevation changes over time for the Lhasa Terrane and the Himalaya region based on isotopic and foliar physiognomic proxies modified from Ding et al.

(2017). India/Asia convergence rates are from Molnar and Stock (2009).

2008). However, it is unlikely that the Paleogene proto-Tibetan
highland was a plateau like it is today because it was the prod-
uct of Mesozoic accretion of the Qiangtang and Lhasa terranes.
This accretion was followed by subduction of oceanic crust
eventually giving rise to folding, faulting and uplifting of Creta-
ceous marine sediments as well as folding and thrusting of older
rocks of the accreted Lhasa and Qiangtang terranes (Fig. 3). The
Paleogene proto-Tibetan highland was likely to have consisted of
at least two major east—west oriented mountain ranges separated
by a string of basins. Estimates of the elevation of the floors of
major basins such as the Lunpola Basin (Polissar et al., 2009;
Rowley and Currie, 2006) are far from definitive because of
proxy limitations (e.g. repeated evaporation/precipitation isotopic
fractionation or lack of precise palaeontological altimeters)
(Fig. 2). Floral and faunal remains from the Lunpola Basin suggest
palaeosurface surface elevations perhaps some 2 km lower than
the published isotopic analyses (Deng et al., 2011; Sun et al.,
2014). However, what we can be certain of is that in the Paleo-
gene, before the closure of the Tethys Ocean and the onset of
collision of Indian continental crust, the part of Asia that we today
call the Tibetan Plateau was not a vast plain at sea level, but
displayed considerable topographic relief, perhaps somewhat like
the Andes today (Ding et al., 2014) with deep valleys between
mountain ranges. Like the modern Andes this proto-Tibetan
highland, made up of the Lhasa and Qiangtang terranes (Fig. 3),
would have hosted extremely high biodiversity, arising from the
mechanisms outlined in Section 1.1.

3. The rise of the Himalaya

A notable feature of the Wang et al. (2014) model of Tibetan
evolution is that until very recently in geological terms (within the
last 15 million years) a high Himalayan mountain front was missing
(Fig. 2). Elevation estimates based on isotopic methods all show
present elevations either being attained within the last 15 Ma
(Garzione et al., 2000; Rowley et al., 2001; Saylor et al., 2009) or a
major feature of the Himalaya such as Mt. Everest (otherwise
known as Qomolangma or Sagarmatha) had achieved ~5 km at
15 Ma (Gébelin et al., 2013) and subsequently continued to rise
another ~3 km. These measurements, showing the Himalaya were
the most recent component of the Tibet-Himalaya edifice (HTE) to
be elevated, are in stark contrast to earlier models that suggest the
Himalaya were the first element of the HTE to be uplifted.

Quantifying the uplift of the Himalaya is quite challenging
because overall any mountain system is an erosional environment
in which evidence of past conditions is constantly being destroyed.
However using plant fossils and isotopic data in preserved pockets
of sediment along the southern edge of the Tibetan Plateau (Ding
et al.,, 2017) (Fig. 3) show that the Himalaya began to rise against
the Gangdese mountain front along the southern part of the Lhasa
Terrane soon after the last Tethyan ocean sediments were depos-
ited at ~58 Ma. By ~56 Ma this proto-Himalaya had achieved, at
least in what is now the central Himalaya, an elevation of ~1 km
(Ding et al., 2017). By earliest Miocene time this part of the proto-
Himalaya had risen to 2.3 + 0.9 km, and by 19 Ma basin floors were
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at ~4 km (Fig. 4). Isotopic analyses from Mount Everest indicate an
elevation of ~5 km at 15 Ma (Gébelin et al., 2013), similar to that of
the Namling-Oiyug basin just to the North on the Lhasa Terrane
(Currie et al., 2016; Khan et al., 2014). Ding et al. (2017) argue that
their relatively localised data reflect a more general uplift along
most of the Himalayan chain because the timing of their uplift
coincides with a general slowing down of the northward move-
ment of India (Molnar and Stock, 2009) as it encountered
increasingly significant resistance (Fig. 4). Following a very rapid
rise in early Miocene time the Himalaya began to project signifi-
cantly above what is now the average elevation of the plateau
(5 km) from 15 Ma onwards (Figs. 2 and 4).

4. The role of the Himalaya in shaping monsoon
characteristics

This post-15 Ma elevation of the Himalayan front above the
mean plateau height is important because it is only in the last 15 Ma
that the Himalaya would have formed a significant barrier to air-
flow, both northwards and southwards, and this barrier effect is
fundamental to determining the characteristics of the South Asia
Monsoon (SAM) (Boos and Kuang, 2010; Molnar et al.,, 2010). At
15 Ma the Namling-Oiyug Basin supported a cool temperate
broadleaved woodland surrounding a large lake (Khan et al., 2014;
Spicer et al., 2003), which in itself indicates far wetter conditions in
southern Tibet at that time than exist at present. After the devel-
opment of the high Himalaya from 15 Ma onwards this part of the
plateau experienced marked drying, particularly in the wet (sum-
mer) season (Ding et al.,, 2017). This would have occurred when
northward moving wet air from the Indian Ocean became
obstructed by the high Himalaya (Molnar et al., 2010). In contrast,
there is no evidence of any significant change in the precipitation
regime experienced in the lowlands immediately south of the
mountains (in the Himalayan Foreland Basin) (Ding et al., 2017),
although the precision of wet season rainfall estimates is poor
because in wet regimes leaf architecture (upon which these esti-
mates were based) is poorly constrained by precipitation (see
http://clamp.ibcas.ac.cn for details). There is some evidence of an
intensification of rainfall seasonality in the eastern Himalaya since
the mid Miocene, especially in the dryness of the dry season, re-
flected in a transition from evergreen to semi-evergreen tropical
forests in that area (Khan et al., 2017).

In a climate modelling exercise Boos and Kuang (2010) noted
that today's SAM conditions were considerably weakened when
both the Himalaya and the Tibetan Plateau were flattened to sea
level, but modern SAM characteristics were retained when only the
Himalaya were left in place. This suggests that the Himalaya have a
major role in determining the primary characteristics of the
monsoon circulation over South Asia. In addition (Molnar et al.,
2010) argued that the idea that the Tibetan Plateau operated as a
kind of ‘hotplate in the sky’ (Flohn, 1968; Yanai and Wu, 2006),
heating up to form a summer low pressure area that draws in moist
air from the Indian Ocean across India, must be false because the
observed area of maximum heating is not over the plateau at all,
but south of the Himalaya over north-western India and Pakistan.
They argued instead for the Himalaya acting as a barrier to winds
from the north that would otherwise cool and ventilate the
northwestern parts of the subcontinent during the summer. So, it
seems it is the presence of the Himalaya, not the Tibetan Plateau,
which allows an intense hot low-pressure cell to develop and drive
the SAM system.

If Boos and Kuang (2010) and Molnar et al. (2010) are correct
then we would expect to find the an intensification of the SAM
system after 15 Ma when the Himalaya rose to form their present
barrier to both northward and southward air flows. However, this

leaves the question: did the SAM system exist before the Himalaya
developed their modern elevations? If not, did any kind of
monsoon exist? To answer these questions first it is necessary to be
clear about what is meant by the term ‘monsoon’ and how we can
characterise monsoons in the deep past.

5. Monsoons — what are they?

There is a great deal of confusion in the scientific literature as to
what constitutes a monsoon. Technically no more than a seasonal
reversal of wind direction (Ramage, 1971), monsoons are often
associated with marked seasonal variations in precipitation.
Although palaeo-wind strengths and direction can sometimes be
recovered from the geological record, particularly in sediments laid
down in ancient arid environments (see overview in Parrish, 1998),
winds are often impossible to determine routinely from the
geological record. For this reason some measure of the ratio be-
tween wet season and dry season precipitation has become a
preferred proxy for palaeoclimate studies aimed at understanding
the history of monsoon climates (e.g. Jacques et al., 2014; Quan
et al, 2011; Shukla et al., 2014a; West et al.,, 2015). However,
there are two problems with this approach: 1) meteorological
definitions of monsoons are far more complex that just wet/dry
seasonal precipitation ratios, particularly as marked wet/dry ratios
can occur in non-monsoonal climates, and 2) geological evidence
for wet/dry seasonal precipitation ratios are invariably preserved in
sediments that accumulate on the floors of sedimentary basins,
exactly where water also accumulates. This ponding of moisture
buffers and biases the precipitation proxies, whether they be
palaeontological (e.g. Jacques et al., 2014; Quan et al., 2011; Shukla
et al.,, 2014a; West et al., 2015) or sedimentological (e.g. Liu and
Ding, 1998; Mack et al., 1993; Retallack, 1990; Sonnenfeld and
Perthuisot, 1989).

5.1. Monsoon definitions and detection from the geological record

Recognising the need for consistent definitions of what consti-
tutes a monsoon for meteorological purposes Wang and Fan (1999),
Wang and Ho (2002) and Zhang and Wang (2008) used a combi-
nation of rainfall amounts, the timing of the onset and cessation of
the rainy season as well as atmospheric pressure to distinguish
monsoons from other climates characterised by marked wet and
dry seasons. Examples of non-monsoonal rainfall seasonality
include those around the Mediterranean Sea, in California and
Chile. Fig. 5a reflects the belt of global monsoons recognised by
Zhang and Wang (2008). They all lie at low latitudes, which reflects
their origins in the seasonal migrations of the ITCZ. In an ocean-
covered world there would be a continuous northern and south-
ern monsoon belt each side of a central equatorial wet zone. In the
real world these belts are broken up by a combination of land/sea
contrasts produced by the presence, position and size of land-
masses, ocean bathymetry and currents, as well as complex
elevated topographies such as the mountains of southern Asia,
which redirect airflow. Of all the monsoon areas that across Asia is
the most complex. The Asia monsoon system is divisible into a SAM,
an East Asia Monsoon (EAM, although some authorities question if
it really is a distinct monsoon system (Molnar et al., 2010)) a
Western Northern Pacific Monsoon (WNPM) and a Transitional
Area (TA) (Wang and Ho, 2002) (Fig. 5b). The WNPM is mirrored,
approximately, by the Indonesia—Australia Monsoon (I-AM), which
occurs south of the Equator. Both the WNPM and the I-AM are
expressions of the climate arising from the seasonal migrations of
the ITCZ virtually unmodified by topography.

There is increasing evidence that because ITCZ seasonal migra-
tions are an inevitable consequence of Earth's obliquity, ITCZ
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Fig. 5. a) Map showing the positions and aerial extent of monsoons as defined by the meteorological parameters of Zhang and Wang (2008). CPSM — Central Pacific Summer
Monsoon, NAmMM — North America Monsoon, SAmM — South America Monsoon, NAfM — North Africa Monsoon, SAfM — South Africa Monsoon; AM — Asia Monsoon, [-AM —
Indonesia—Australia Monsoon. b) Map of southern Asia showing the influenced by the South Asia Monsoon (SAM), the East Asia Monsoon (EAM), the Transitional Area of interaction
of the SAM and EAM, The Western Northern Pacific Monsoon (WNPM), and the Indonesia—Australia Monsoon (I-AM). Monsoon boundaries based on meteorological parameters of
Wang and Ho (2002). Fossil sites (red filled triangles): 1 — Gurha 72, 2 — Gurha 32, 3 — Tirap, 4 — Liuqu, 5 — Qiabulin, 6 — Changchang, 7 — Youganwo, 8 — Huangniuling Lower, 9 —

Huangniuling Upper, 10 — Shangcun.

generated monsoon climates should have been present at low lat-
itudes throughout Earth's history, but modified to greater or lesser
extents over time by changing palaeogeography. This is stark
contrast to the idea that the Asian monsoon system is a Neogene
phenomenon (e.g. An et al., 2001; Guo et al., 2008), related to Ti-
betan uplift (Liu and Dong, 2013).

The latitudinal range of ITCZ migrations, and the characteristics
of Hadley circulation that generates the ITCZ, are not static over
time but depend in part on the Equator-to-pole temperature
gradient. In the past (such as in the Eocene) these gradients have
been much shallower than at present (e.g. Greenwood and Wing,
1995). This gives rise to a change in the Hadley circulation
(Hasegawa et al., 2012) and a change in the spatial distribution of
precipitation generated by the ITCZ. Late Cenozoic cooling (steep-
ening of the Equator-to-pole thermal gradient) and ice sheet for-
mation, both at the poles and over high mountains, affects
atmospheric circulation including that of the monsoons (e.g. Liu

et al., 1998) and recent kilo-year variations in monsoon character-
istics could well be influenced by fluctuations in ice volumes (Ding
etal., 1995). Despite thermal gradient affects on ITCZ characteristics
modelling shows that in an Eocene world with, or without an
elevated Tibet, southern Asia would have experienced a pro-
nounced monsoonal climate (Huber and Goldner, 2012).

If theory and modelling are correct the following questions
arise: is there evidence of such old monsoons and if there is, what
kind of monsoon are they? Clues to answering these questions can
be found in the findings of Shukla et al. (2014) and Licht et al.
(2014). Both works included data interpreted in terms of wet/dry
ratios although Licht et al. (2014) provided some information on
prevailing wind directions and incorporated climate modelling.
While these works support the presence of monsoon systems they
do not indicate whether the monsoons concerned were those of the
simple and inevitable ITCZ type, or were those with strong
geographic and topographic modification typical of today's SAM.
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5.2. Monsoon ‘fingerprinting’ using leaf form

To operate efficiently leaves of perennial woody plants have to
be adapted to their immediate environment, especially atmo-
spheric conditions, and leaves of evergreen taxa (common at low
latitudes) that are exposed to monsoon climates have to be
particularly well adapted to the seasonal extremes they experience
across all climate variables (both thermal and hydrological). These
adaptations give rise to unique monsoon ‘fingerprints’ encoded in
leaf architecture. On a global scale climate controls leaf form more
powerfully than phylogeny (Yang et al., 2015). Plant taxa able to
survive at a given location under a given climate either are 1)
selected because they inherently have the appropriate leaf archi-
tectures to function most efficiently in those situations, or 2) are
capable of easily moderating leaf form to suite local conditions (i.e.
natural selection has given rise to a genome capable of generating
highly plastic phenotypes), or 3) both these scenarios. It is no sur-
prise then that monsoon climates select for distinctive woody dicot
leaf trait spectra (Jacques et al., 2011; Spicer et al., 2016).

By using fossil leaf trait spectra Spicer et al. (2017) positioned
early Eocene to early Miocene fossil leaf assemblages from across
India and South China in a multidimensional physiognomic space
defined by modern global woody dicot leaf form (Fig. 6). They were
able to demonstrate that all the fossils from southern Asia showed
leaf trait spectra typical of those exposed to monsoon climates, but
more specifically they showed that Paleogene leaf architectures
were most similar to those seen today in areas exposed to the I-AM,
but not the SAM. None clearly displayed SAM type adaptations
although a few, notably the Eocene and Oligocene Indian samples
(Gura and Tirap respectively) and an Eocene Tibet sample (Liuqu),
plotted close to the modern SAM physiognomic space (Fig. 6), the
boundaries of which are necessarily gradational.

The fossil assemblages from the early Eocene of India (the Gurha
Mine assemblages reported by Shukla et al. (2014) (Fig. 3), are
particularly interesting in that they were close to the Equator
(<10°) when they were being formed. If the Eocene ITCZ behaved
similarly to the ITCZ of today in both migration range and Hadley
cell circulation, then we should expect that the Gurha mine area
would have been within, or very near to, the Equatorial ever-wet
zone. However, both sedimentological and leaf architectural evi-
dence indicated pronounced seasonal variations in rainfall (Shukla
et al., 2014). It is not possible to come to definitive conclusions
regarding the width of the Equatorial ever-wet zone (conceivably it
may not even existed if the latitudinal migrations of the ITCZ were
large enough) because of uncertainties in the palaeomagnetic
positioning of India (Molnar and Stock, 2009), but any taxa on the
Indian raft must have been exposed to strong seasonal variations in
precipitation as India approached the Equator, and again as it
moved into the northern Hemisphere. This ‘monsoon filter’ would
have pre-selected taxa on the Indian ‘raft’ for the climate regime
that now predominates across southern Asia. Moreover, seasonal
reversals in air flow associated just with the ITCZ migrations would
have facilitated genetic interchange by air and sea prior to a land
bridge being established during the early phase of collision (Spicer
et al,, 2017).

The lack of a distinctive SAM type leaf trait spectrum in the low
altitude (~1 km) early Eocene Liuqu flora, southern Tibet, suggests
that the proto-Tibetan highland did not enhance the prevailing ITCZ
monsoon system to any great extent. Situated on the central
southern slopes of the proto-Tibetan highland the Liuqu site is
analogous to areas of the modern Gangetic Plain or Siwaliks today,
which experience a strong SAM. The nearby Qiabulin site, recording
earliest Miocene climate (Ding et al., 2014), also does not display a
strong SAM signature, possibly in part because the higher elevation
was associated with elevation-induced rainfall even in the dry

season. In the middle (13 Ma) and late Miocene to Pleistocene,
however, near sea-level leaf assemblages from the eastern Siwaliks
show monsoon signatures and vegetation not dissimilar to those
existing there today (Khan et al., 2014). This shows that the modern
SAM is a middle Miocene and later phenomenon.

The onset of the SAM and EAM are often linked (e.g. An et al.,
2001), but in terms of their climatological characteristics they are
distinctly different (Molnar et al., 2010) and are unlikely to be
driven by the same mechanisms. Not having a significant mountain
range, like the Himalaya, to the north of China means that seasonal
temperature and pressure variations in Central Asia influence
strongly seasonal reversals in air parcel trajectories over China.
These influences would be stronger in a cool world (such as the
present) when the Asian continental interior cools down dramati-
cally in winter forming a strong Siberian High pressure area. Today
moist summer winds from a warm ocean to the south, combined
with cold dry air from an intense Siberian High flooding into
northern and western China in the winter, generates an EAM
characterized by a marked summer wet/winter dry oscillation in
wind direction and moisture, accompanied by significant temper-
ature differences. In a warmer than present Paleogene Central Asia
winter temperatures are likely to have been higher and winter
high-pressure systems less intense. Without the very cold dry
winter air-flow southwards from Central Asia, the EAM in the
Paleogene would not have existed in its current form.

Could a Paleogene proto-Tibetan highland have influenced the
climate over that part of Asia that today experiences the EAM? The
proto-Tibetan highland, with elevations approaching 5 km and
made up of the Lhasa and Qiangtang terranes, would certainly have
influenced the passage of eastward air-flow (Westerlies) much as
Tibet does today. However, perhaps more importantly, north of the
proto-Tibetan highland large depositional basins existed. There
were the Hoh Xil and Qaidam basins (Figs. 2 and 3), which possibly
at some point were connected (Yin et al., 2008), and which received
sediment from the Qiangtang block via northward-flowing rivers
(Liu and Wang, 2001). Beginning at ~52 Ma and ending at 13.5 Ma,
the Hoh Xil Basin accumulated >5000 m of sediments making up
the Fenghuaoshan, Yaxicuo and Wudaoliang groups. The charac-
teristics of the sediments indicate fluvial, lacustrine and playa
depositional environments. In other words these northern basins
were full of water and not the arid regions they are today. Before
the Miocene the Hoh Xil basin was seemingly at low elevation
(>2 km (Cyr et al., 2005), but subsequently, based on isotopic
studies, rose to ~4 km in the Miocene (Polissar et al., 2009) (Fig. 2).
For the reasons given above this elevation may be an overestimate,
but there can be no doubt that Miocene sediments (23.5—13.5 Ma)
within the Hoh Xil Basin point to it supporting a vast lake system
(Wu et al., 2008). Winter Westerlies (Fig. 3) would have supplied
humid air from these lakes to large parts of China, so wet/dry
season precipitation was far less pronounced than in the modern
EAM.

Based on leaf form there is no evidence of an identifiable EAM in
the Eocene (Spicer et al.,, 2016), but other palaeobotanical data
suggests that as early as ~40 Ma the start of the EAM may have been
underway (Quan et al., 2011). However, if this was the case, the
strength of the EAM was insufficient to re-organise the major cli-
matic zones in China until 17 Ma later (Guo et al., 2008). The re-
organisation, exemplified by the loss of an arid belt spanning
central China to a broad arid zone across northwestern China, did
not happen until the start of the Miocene (Sun and Wang, 2005).

A Neogene (early Miocene) intensification of the EAM, sup-
ported by palaeobotanical data (Sun and Wang, 2005), finds of
Miocene loess (e.g. Guo et al., 2002) and carbon isotope studies (Jia
etal., 2003), suggests that, as with the SAM, the presence of a proto-
Tibetan highland did not by itself bring into being the Asian
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Fig. 6. CLAMP-based multidimensional plot of woody dicot leaf form. Modern vege-
tation sites positioned grouped by their occurrence in the monsoon areas of Wang and
Ho (2002) and Zhang and Wang (2008) (Fig. 5): EAM — East Asia Monsoon, I-AM —

monsoon system as we know it today. That both the SAM and the
EAM appear to be largely Neogene only phenomena requires pre-
dominantly Neogene driving mechanisms. Clearly the rise of the
Himalaya is a likely cause of the development of the SAM through
redirection of airflow, and this could also have contributed to re-
organization of atmospheric circulation to form the EAM. Howev-
er, other factors may also be at play.

If the isotope-derived elevations are correct the rise of large
parts of the northern Tibetan Plateau took place after 23 Ma (Wang
et al.,, 2014) (Fig. 2). This, and the subsequent loss of large moisture
sources north of the developing plateau, may also have influenced
the formation of the EAM. On at least four occasions during the
Cretaceous and Paleogene shallow marine sediments periodically
connected the Tarim Basin (Fig. 3) (Bosboom et al., 2014) to the
Mediterranean Tethys, however there is some evidence in the form
of foraminiferal remains and isotopic signatures that in the early
Miocene the Tarim Basin was connected to open marine conditions
to the west and at sea level (Kent-Corson et al., 2009; Ritts et al.,
2008). It was only in the middle Miocene that the Tarim Basin
finally became isolated and elevated above sea level cutting off a
major moisture supply to the Asian interior. It is also at this time
that lake deposition in the Hoh Xil Basin seems to cease.

In the Eocene southern China appears to have had only a weak
monsoon presence compared to today (Spicer et al., 2016; Herman
et al., 2017), but precipitation seasonality increased over time such
that by the late early Oligocene an I-AM type monsoon climate was
beginning to be established (Herman et al., 2017). Today this part of
China (specifically the Maoming Basin, Guangdong Province)
(Fig. 3) is located in the Transitional Area of Wang and Ho (2002)
(Fig. 5) and experiences the influence of both the SAM and EAM.
With the lack of both the SAM and EAM in the Paleogene it is not
possible to attribute the cause of the trend towards monsoon
conditions recorded in the Maoming fossil leaf architectures, but it
is possible that future Earth system modelling might help resolve
this.

6. The origins of the modern exceptional biodiversity across
southern Asia

It is clear from theoretical considerations, climate modelling and
observation that southern Asia must have been exposed to ITCZ
monsoon climates since at least the early Eocene (and probably
long before), and that monsoon climates predominated across the
region even in the absence of an elevated Tibetan Plateau or
Himalaya. However, we have also seen that there is an abundance
of evidence to suggest there was a proto-Tibetan highland in
Eocene time, but that this did not, by itself, generate modern SAM
or EAM type monsoon systems. Such a highland would, however,
have hosted considerable biodiversity (see Section 1.1) by virtue of
its low latitude position and complex topographic relief. Because
the high Himalaya were yet to form this highland would, as fossil
evidence suggests (Ding et al., 2017; Khan et al., 2014), have had a
wetter climate than the Tibetan Plateau does today.

In her critical review Renner (2016), notes that numerous Asian
molecular phylogenies are linked to a supposed Miocene uplift of

Indonesia—Australia Monsoon, NAmM — North America Monsoon, NM — No Monsoon,
SAM — South Asia Monsoon, TA — Transitional Area. Fossil sites are shown as filled
numbered circles: 1 — Gurha 72, 2 — Gurha 32, 3 — Tirap, 4 — Liuqu, 5 — Qiabulin, 6 —
Changchang, 7 — Youganwo, 8 — Huangniuling Lower, 9 — Huangniuling Upper, 10 —
Shangcun. Sites 7—10 are all from the Maoming Basin and are in stratigraphic order
range from middle Eocene to late Eocene (7—9) and late early Oligocene (10). When
CCA axes 1-3 are taken together all fossil sites plot in the area occupied by the modern
Asia monsoon system so clearly the fossil leaf forms showed adaptations to monsoon
conditions. No fossil assemblages sit within the area occupied by the modern SAM
(green shading), while most are within the modern I-AM and TA.
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the Tibetan Plateau. However, as evidenced above, large parts of
Tibet were already high in the Paleogene and must have already
supported high biodiversity long before the Miocene. What we do
see in Miocene time is a modification of the prevailing ITCZ type
monsoon systems towards the modern SAM conditions coincident
with the high Himalaya projecting above 5 km at around 15 Ma. If
the Miocene nodal ages seen in the molecular phylogenies are real
and not an artifact of circular reasoning, then it is possible that the
rise of the Himalaya not Tibet, and the subsequent development of
the SAM, had major impacts on species diversification across
southern Asia.

6.1. The need for accurate dating of fossil assemblages

Molecular phylogenies are often constrained using fossil data
(Renner, 2016) and it is not just the molecular phylogenies that
have been linked to the Miocene. Many fossil floras across the 200
or so fossiliferous Cenozoic basins of Yunnan have been regarded as
being Miocene because they appear modern: they contain a large
number of modern genera. Almost all these fossiliferous basins lack
radiometric dates, the exceptions being the Pliocene Tengchong
deposits reported by Li et al. (2000) and the Eocene Jianchuan Basin
(Gourbet et al., 2017). Correlation between the vast majority of
basins has been made on the basis of their contained fossil fauna
and flora, particularly the pollen floras. Many of the basins contain a
modern-looking palynoflora and so have been assigned Miocene or
younger ages (Province of Yunnan Bureau of Mining and Geology,
1990). Inevitably this sets up a circular pattern of reasoning that
re-enforces the Miocene as being a critical period for Asian biodi-
versity evolution.

Recently, however, pristine volcanic ashes were discovered in
one such basin, the Lithe Basin of central Yunnan, that had been
regarded as late Miocene in age, containing as it does a diverse
pollen, leaf and wood flora (Ma et al., 2005; Xu et al., 2008; Yi et al.,
2003; Zhang et al., 2007) of modern appearance. U/Pb dating of
well preserved zircons in the ashes yielded youngest ages of
33 + 1 Ma making the fossiliferous beds early Oligocene, some 20
million years older than previously thought (Linnemann et al., in
press). This shows that in this basin at least, a modern type of
vegetation existed long before the Miocene. Although other basins
rich in plant and animal fossils have yet to be similarly dated, it is
likely that a modernization of the flora in this part of southern Asia
was a Paleogene phenomenon unconnected with the onset of the
SAM but rooted, nevertheless, in a monsoon climate regime similar
to that of today's I-AM. It is possible that this modernization took
place, as elsewhere in the world, across the Eocene—Oligocene
transition (Prothero, 1994) or more likely earlier, but further work
using accurately dated deposits is needed to explore this.

Another consequence of the revised age for the Liihe basin is
that isotope palaeoelevation estimates that used a Miocene isotopic
lapse rate and sea level comparator (Hoke et al., 2014; Li et al., 2015)
will be erroneous, leading to a revised understanding of landscape
evolution in Yunnan. This error is not restricted to the Liihe Basin
but also applies to the Jianchuan Basin, also in Yunnan, close to the
Tibetan Plateau. Long regarded as accumulating sediment from the
Eocene to as recently as the Pliocene, radiometric dating has shown
that the uppermost part of the Jianchuan basin-fill, previously
considered to be of Pliocene age, dates from 35.4 + 0.9 Ma and so is
late Eocene (Gourbet et al.,, 2017). Consequently the isotope-
derived palaeoelevations of the Jianchuan Basin of Li et al. (2015)
of 2.6 + 0.8/—1.1 km in the Miocene and Hoke et al. (2014) of
3.3+1 km in the late Eocene can no longer be regarded as plausible.
Correcting for age-related changes in isotope lapse rates, temper-
atures, trajectories and palaeogeographic positioning etc. Gourbet
et al. (2017) have recalculated the late Eocene elevation of the

Jianchuan Basin to be 1.2 + 1.2 km. Clearly the application of
quantitative dating methods to the numerous Cenozoic sedimen-
tary basins of Yunnan and across southern Asia will, in the coming
years, completely transform our current ideas of landscape evolu-
tion (including mountain building, river courses, climate and biota)
in the region. This has profound implications for understanding the
antiquity of the Indo-Burma biodiversity hotspot as well as
monsoon evolution.

6.2. Quaternary whiteout?

The preceding review has focused on tectonic timescales over
which significant mountain building can take place. However, it is
worth remembering that shorter timescale events can also have
significant impact upon biodiversity and migration of biotas. In
respect of Tibet perhaps most important of these in the last
1 million years has been glaciation. If estimates of the extent of
late Pleistocene glaciation are correct then Tibetan Plateau was
covered in 2.4 million km? of ice (Kuhle, 1998), which must have
either led to extinction or driven many taxa off the plateau and
downslope to potentially hybridize with, or compromise, biota in
the surrounding regions. Certainly parts of northwestern Yunnan
show signs of recent glacial activity in terms of well developed ‘U’
shaped valleys down to elevations of ~2 km, but the extent to
which Quaternary Tibetan ice cover overwrote the history of more
deep rooted biodiversity origins across the region remains to be
investigated.

7. Summary and conclusions
To return to the questions posed at the beginning of this review:

i) Paying particular attention to major features such as Tibet
and the Himalaya, how and when did the regional topog-
raphy evolve?

Elevated terrain over the area we call Tibet existed well
before the Miocene and in fact an Andean type topog-
raphy with surface elevations of at least 4.5 km existed at
the start of the Eocene before final closure of the Tethys
Ocean that separated India from Eurasia. The Himalaya
were formed not at the start of the India—Eurasia collision
but after much of Tibet had achieved its present elevation.
The Himalaya built against a pre-existing proto-Tibetan
highland and only projected above the average height of
the plateau at around 15 Ma.

ii) How and when did the Asian monsoon systems arise, and are
the current monsoon systems connected with the height of
Tibet and or the Himalaya?

Paleogene monsoons of the type seen in today's Indone-
sia—Australia region existed in the Paleogene and were
simply an expression of the seasonal migrations of the
ITCZ. Climate modelling demonstrates that such mon-
soons would have existed even in the absence of signifi-
cant topography over Tibet. This suggests that a proto-
Tibetan highland had only a minor influence, if any, in
shaping monsoon systems over Asia in the Eocene. The
South Asia Monsoon appears to have arisen after the mid
Miocene, probably in response to the presence of a high
(>5 km) Himalaya, acting as a barrier to north—south air-
flow.

The East Asia Monsoon also appears to be a Neogene
phenomenon, arising in the Early Miocene (~22 Ma), and
may be associated with cooling over central Asia as global
temperatures declined, the rise of large parts of northern
Tibet and possibly other parts of Asia deflecting air-flow,
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and the loss of large water bodies in the Tarim, Hoh Xil
and Qaidam Basins.
iii) How old are the Asian biodiversity ‘hotspots’ and how do
they relate to development of the Asian monsoon systems?
Newly discovered and dated volcanic ash beds in the Liihe
Basin, previously regarded as late Miocene, show that the
modernization of the flora in this region took place by the
earliest Oligocene and not the Miocene as previously
assumed. This demonstrates a Paleogene origin of the
modern rich biota of the region. The southern Asia
biodiversity is therefore deep rooted in an orographically
complex region under a monsoonal climate dating back at
least 50 Ma.
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