1,529 research outputs found

    Evidence for bacteriophage T7 tail extension during DNA injection

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    The Impact of Adolescent Chronic Pain on Functioning: Disentangling the Complex Role of Anxiety

    Get PDF
    A number of adolescents with chronic pain have clinically significant disability across physical, social, and academic activities, and pain severity only explains a portion of the variance in functioning. Thus, it is important to identify therapeutic options to improve adolescents’ functioning. In contrast to studies with adults with chronic pain, research in pediatric pain has not consistently found anxiety to be a good predictor of pain-related disability. The present study evaluated pain, anxiety, and functioning in 222 adolescents with chronic pain. Results indicated that pain was consistently and linearly related to disability across measures of physical and social functioning, school attendance, and physician visits. The relation between anxiety and functioning was complex; increased anxiety was related to poorer physical and social functioning and was related to fewer physician visits, although it was not associated with school attendance. Additional analyses revealed that anxiety serves to moderate the relation between pain and functioning. Specifically, at high anxiety, pain was not related to functioning, but at low anxiety pain consistently predicted disability. In other words, highly anxious adolescents were functioning poorly regardless of the level of pain. The moderating role of anxiety highlights a number of research and clinical possibilities to explore with adolescents with chronic pain-related disability. Data suggest that high anxiety is associated with poor functioning irrespective of pain intensity. At low anxiety, higher pain predicted greater disability. Anxiety is important to assess when investigating potential reasons for pain-related disability

    ANSI/NISO Z39.99-2017 ResourceSync Framework Specification

    Get PDF
    This ResourceSync specification describes a synchronization framework for the web consisting of various capabilities that allow third-party systems to remain synchronized with a server’s evolving resources. The capabilities may be combined in a modular manner to meet local or community requirements. This specification also describes how a server should advertise the synchronization capabilities it supports and how third-party systems may discover this information. The specification repurposes the document formats defined by the Sitemap protocol and introduces extensions for them

    Characteristics of chronic non-specific musculoskeletal pain in children and adolescents attending a rheumatology outpatients clinic: a cross-sectional study

    Get PDF
    Background: Chronic non-specific musculoskeletal pain (CNSMSP) may develop in childhood and adolescence, leading to disability and reduced quality of life that continues into adulthood. The purpose of the study was to build a biopsychosocial profile of children and adolescents with CNSMSP. Methods: CNSMSP subjects (n = 30, 18 females, age 7-18) were compared with age matched pain free controls across a number of biopsychosocial domains. Results: In the psychosocial domain CNSMSP subjects had increased levels of anxiety and depression, and had more somatic pain complaints. In the lifestyle domain CNSMSP subjects had lower physical activity levels, but no difference in television or computer use compared to pain free subjects. Physically, CNSMSP subjects tended to sit with a more slumped spinal posture, had reduced back muscle endurance, increased presence of joint hypermobility and poorer gross motor skills. Conclusion: These findings support the notion that CNSMSP is a multidimensional biopsychosocial disorder. Further research is needed to increase understanding of how the psychosocial, lifestyle and physical factors develop and interact in CNSMSP

    An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement In Accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent

    An expanded evaluation of protein function prediction methods shows an improvement in accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. Keywords: Protein function prediction, Disease gene prioritizationpublishedVersio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore