47 research outputs found

    Corporate Governance, Ukuran Perusahaan, Dan Leverage Terhadap Manajemen Laba Perusahaan Manufaktur Indonesia

    Full text link
    The aims of the research are to find out (1) influence of corporate governance which is arecategorized into managerial ownership, institutional ownership, board size, boardcomposition of independent commissioners, and audit committees on earnings management,(2) influence of firm size on earnings management, (3) influence of leverage on earningsmanagement. This study drew 28 samples from manufacturing companies listed in IndonesiaStock Exchange with a purposive sampling technique. The research data was collected fromannual reports within a period 2006 to 2009 of the Capital Market Reference Centre ofIndonesian Stock Exchange. The method of analysis was multiple linear regressions. Theresults of the study indicated that (1) corporate governance with managerial ownership,board composition of independent commissioners, and audit committee had significantnegative influence on earnings management, while institutional ownership and board size hadsignificant positive influence on earnings management, (2) firm size had significant negativeinfluence on earnings management, (3) leverage had not significant influence on earningsmanagement

    Stellar Diameters and Temperatures II. Main Sequence K & M Stars

    Get PDF
    We present interferometric diameter measurements of 21 K- and M- dwarfs made with the CHARA Array. This sample is enhanced by literature radii measurements to form a data set of 33 K-M dwarfs with diameters measured to better than 5%. For all 33 stars, we compute absolute luminosities, linear radii, and effective temperatures (Teff). We develop empirical relations for \simK0 to M4 main- sequence stars between the stellar Teff, radius, and luminosity to broad-band color indices and metallicity. These relations are valid for metallicities between [Fe/H] = -0.5 and +0.1 dex, and are accurate to ~2%, ~5%, and ~4% for Teff, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity dependent transformations to convert colors into stellar Teffs, radii, and luminosities. We find no sensitivity to metallicity on relations between global stellar properties, e.g., Teff-radius and Teff-luminosity. Robust examinations of single star Teffs and radii compared to evolutionary model predictions on the luminosity-Teff and luminosity-radius planes reveals that models overestimate the Teffs of stars with Teff < 5000 K by ~3%, and underestimate the radii of stars with radii < 0.7 R\odot by ~5%. These conclusions additionally suggest that the models overestimate the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for single stars to those of eclipsing binaries, we find that single and binary star radii are consistent. However, the literature Teffs for binary stars are systematically lower compared to Teffs of single stars by ~ 200 to 300 K. Lastly, we present a empirically determined HR diagram for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system. [abridged]Comment: 73 pages, 12 Tables, 18 Figures. Accepted for publication in The Astrophysical Journa

    Zebrafish as a model for kidney function and disease

    Get PDF
    Kidney disease is a global problem with around three million people diagnosed in the UK alone and the incidence is rising. Research is critical to develop better treatments. Animal models can help to better understand the pathophysiology behind the various kidney diseases and to screen for therapeutic compounds, but the use especially of mammalian models should be minimised in the interest of animal welfare. Zebrafish are increasingly used, as they are genetically tractable and have a basic renal anatomy comparable to mammalian kidneys with glomerular filtration and tubular filtration processing. Here, we discuss how zebrafish have advanced the study of nephrology and the mechanisms underlying kidney disease

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Bending of multilayer sandwich beams.

    No full text
    corecore