313 research outputs found

    Mental transformation abilities in patients with unilateral and bilateral vestibular loss

    Get PDF
    Vestibular information helps to establish a reliable gravitational frame of reference and contributes to the adequate perception of the location of one's own body in space. This information is likely to be required in spatial cognitive tasks. Indeed, previous studies suggest that the processing of vestibular information is involved in mental transformation tasks in healthy participants. In this study, we investigate whether patients with bilateral or unilateral vestibular loss show impaired ability to mentally transform images of bodies and body parts compared to a healthy, age-matched control group. An egocentric and an object-based mental transformation task were used. Moreover, spatial perception was assessed using a computerized version of the subjective visual vertical and the rod and frame test. Participants with bilateral vestibular loss showed impaired performance in mental transformation, especially in egocentric mental transformation, compared to participants with unilateral vestibular lesions and the control group. Performance of participants with unilateral vestibular lesions and the control group are comparable, and no differences were found between right- and left-sided labyrinthectomized patients. A control task showed no differences between the three groups. The findings from this study substantiate that central vestibular processes are involved in imagined spatial body transformations; but interestingly, only participants with bilateral vestibular loss are affected, whereas unilateral vestibular loss does not lead to a decline in spatial imager

    Partial withdrawal of deeply inserted cochlear electrodes: observations of two patients

    Get PDF
    Three patients implanted in our department received the preformed Clarion S-Series cochlear implant with the electrode Positioning System (EPS). The EPS is a device designed to bring the electrode array closer to the modiolus and deeper into the cochlea. Two of these patients still complained because they were perceiving too low pitch sounds, and because of the presence of echoes and poor discrimination after 3years of implant use and many tuning sessions. We hypothesized that the electrode array was too deeply inserted and could be stimulating overlapping populations of neurons in the low frequency range. The EPS was removed through a transcanal tympanotomy under local anesthesia and the array was pulled 2-3mm out of the cochlea. The angle of electrode insertion into the cochlea and the patients' performances on consonant identification tests were evaluated before and after the removal surgery and over the long term, 3years after the surgery. Immediately after the removal surgery the angle of insertion of the electrode array decreased from 720° to 485° in one case and from 675° to 485° in the other. Both patients reported subjective improvements after the removal which were confirmed by tests of performance at the long term by one of the patients. These observations show that (1) the electrode array can be moved without deterioration of performances even several years after being implanted; revision surgery may be beneficial in some cases, (2) neighboring electrodes might stimulate overlapping populations of neurons, inducing a deterioration of performances; for anatomical reasons, this is most likely to occur in the apex of the cochlea and (3) tuning of the external processor should be a customized procedur

    Palinopsia Following Acute Unilateral Partial Vestibular Deafferentation: A Case Report

    Get PDF
    Palinopsia is defined as the persistence or reappearance of images after cessation of the visual stimulus. One patient presented episodes of palinopsia after the functional loss of the 3 semicircular canals of the right ear while the otolithic function was preserved. None of classical causes was identified in this patient, intoxications, brain tumors, migraines, psychiatric disorders, etc. For a movement to be perceived as a single event, central processes of temporal integration are necessary to correct the shift between the rapid vestibular information, and the slow visual information. However, it has been shown on animal models that vestibular inputs are slower than normal in case of peripheral deafferentation limited to the canalar function with preservation of the otolithic function, which is the case in this patient. Therefore, we hypothesize that episodes of palinopsia he presents result from the fact that temporal integration processes do not take into account the slower than normal vestibular information due to the peripheral disorder and continue to slow it down. Thus, the patient keeps the visual image in memory until the late arrival of the vestibular information

    The Vestibular Implant: Quo Vadis?

    Get PDF
    Objective: To assess the progress of the development of the vestibular implant (VI) and its feasibility short-term. Data sources: A search was performed in Pubmed, Medline, and Embase. Key words used were “vestibular prosth*” and “VI.” The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation. Study selection: All studies about the VI and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the VI. Data extraction and synthesis: Data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: To use a basic VI in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation), complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt

    Identification of Genes Regulating Gene Targeting by a High-Throughput Screening Approach

    Get PDF
    Homologous gene targeting (HGT) is a precise but inefficient process for genome engineering. Several methods for increasing its efficiency have been developed, including the use of rare cutting endonucleases. However, there is still room for improvement, as even nuclease-induced HGT may vary in efficiency as a function of the nuclease, target site, and cell type considered. We have developed a high-throughput screening assay for the identification of factors stimulating meganuclease-induced HGT. We used this assay to explore a collection of siRNAs targeting 19,121 human genes. At the end of secondary screening, we had identified 64 genes for which knockdown affected nuclease-induced HGT. Two of the strongest candidates were characterized further. We showed that siRNAs directed against the ATF7IP gene, encoding a protein involved in chromatin remodeling, stimulated HGT by a factor of three to eight, at various loci and in different cell types. This method thus led to the identification of a number of genes, the manipulation of which might increase rates of targeted recombination

    Experimental investigation of the stability of Fe-rich carbonates in the lower mantle

    Get PDF
    International audienceThe fate of carbonates in the Earth's mantle plays a key role in the geodynamical carbon cycle. Although iron is a major component of the Earth's lower mantle, the stability of Fe-bearing carbonates has rarely been studied. Here we present experimental results on the stability of Fe-rich carbonates at pressures ranging from 40 to 105 GPa and temperatures of 1450-3600 K, corresponding to depths within the Earth's lower mantle of about 1000-2400 km. Samples of iron oxides and iron-magnesium oxides were loaded into CO2 gas and laser heated in a diamond-anvil cell. The nature of crystalline run products was determined in situ by X-ray diffraction, and the recovered samples were studied by analytical transmission electron microscopy and scanning transmission X-ray microscopy. We show that Fe-(II) is systematically involved in redox reactions with CO2 yielding to Fe-(III)-bearing phases and diamonds. We also report a new Fe-(III)-bearing high-pressure phase resulting from the transformation of FeCO3 at pressures exceeding 40 GPa. The presence of both diamonds and an oxidized C-bearing phase suggests that oxidized and reduced forms of carbon might coexist in the deep mantle. Finally, the observed reactions potentially provide a new mechanism for diamond formation at great depth

    Drafting a Surgical Procedure Using a Computational Anatomy Driven Approach for Precise, Robust, and Safe Vestibular Neuroprosthesis Placement-When One Size Does Not Fit All

    Get PDF
    OBJECTIVE: To design and evaluate a new vestibular implant and surgical procedure that should reach correct electrode placement in 95% of patients in silico. DESIGN: Computational anatomy driven implant and surgery design study. SETTING: Tertiary referral center. PARTICIPANTS: The population comprised 81 patients that had undergone a CT scan of the Mastoid region in the Maastricht University Medical Center. The population was subdivided in a vestibular implant eligible group (28) and a control group (53) without known vestibular loss. INTERVENTIONS: Canal lengths and relationships between landmarks were calculated for every patient. The relationships in group-anatomy were used to model a fenestration site on all three semicircular canals. Each patient's simulated individual distance from the fenestration site to the ampulla was calculated and compared with the populations average to determine if placement would be successful. MAIN OUTCOME MEASURES: Lengths of the semicircular canals, distances from fenestration site to ampulla (intralabyrinthine electrode length), and rate of successful electrode placement (robustness). RESULTS: The canal lengths for the lateral, posterior, and superior canal were respectively 12.1 mm ± 1.07, 18.8 mm ± 1.62, and 17.5 mm ± 1.23, the distances from electrode fenestration site to the ampulla were respectively 3.73 mm ± 0.53, 9.02 mm ± 0.90, and 5.31 mm ± 0.73 and electrode insertions were successful for each respective semicircular canal in 92.6%, 66.7%, and 86.4% of insertions in silico. The implant electrode was subsequently revised to include two more electrodes per lead, resulting in a robustness of 100%. CONCLUSIONS: The computational anatomy approach can be used to design and test surgical procedures. With small changes in electrode design, the proposed surgical procedure's target robustness was reached

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore