809 research outputs found

    Positron emission tomography in colorectal cancer using 3'-18F fluoro-3'-deoxythymidine: A clinical and biological study.

    Get PDF
    The success of Positron Emmission Tomography (PET) in oncological imaging is based on the fact that malignancy leads to an alteration in cellular biochemical reactions. PET tracers, used for detecting malignancies, are synthetic positron emitting analogues of molecules involved in these metabolic processes. The recent development of the thymidine analogue [18F]3'-deoxy-3'-fluorothymidine (FLT) targets the salvage pathway of DNA synthesis and it is thought to have the potential to visualise cellular proliferation. The aim of this thesis was to investigate the potential clinical use of FLT in colorectal cancer (CRC). FLT pharmacokinetics in patients with CRC were mapped, and methodologies for the quantitative analysis of in vivo FLT uptake were defined; subsequently the accuracy of semi-quantitative indices (SUVs) was assessed. FLT uptake was compared to that of the established glucose analogue radiotracer [18F]fluoro-2-deoxy-D-glucose FDG (calculated using SUVs), in patients with primary and/or metastatic disease. Both FLT and FDG were compared with Ki67 immunohistochemistry in the same patients to determine whether PET can quantify cellular proliferation in vivo. FLT was also used to assess response to cytotoxic drug treatment 5-Fluorouracil (5FU) in cultured CRC cells. Semi-quantitation in the form of SUVs allowed an accurate interpretation of the uptake rate of the tracer. FLT PET provides acceptable imaging of primary colorectal tumours, but there are inherent difficulties in diagnosing the presence of liver metastases, secondary to the hepatic metabolism of the tracer. There was excellent correlation between FLT SUVs and Ki67 immunohistochemistry (R=0.8), which can be interpreted as a true reflection of the proliferative rate of colorectal cancer tissue. In vitro, cell killing caused by exposure to 5FU resulted in increased FLT uptake, with excellent correlation (R=0.9). FLT PET could in the future contribute to a non-invasive method of in vivo grading of malignancy and be used to predict early response to adjuvant chemotherapy

    In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography

    Get PDF
    Background and aims: Positron emission tomography (PET) using 18F labelled 2-fluoro-2-deoxy-D-glucose (18FDG) is an established imaging tool, although the recent development of a biologically stable thymidine analogue [18F] 3'-deoxy-3-fluorothymidine (18FLT) has allowed PET to image cellular proliferation by utilising the salvage pathway of DNA synthesis. In this study, we have compared uptake of 18FLT and 18FDG with MIB-1 immunohistochemistry to evaluate the role of PET in quantifying in vivo cellular proliferation in colorectal cancer (CRC). Patients and methods: Patients with resectable, primary, or recurrent CRC were prospectively studied. Thirteen lesions from 10 patients (five males, five females), median age 68 years (range 54–87), were evaluated. Patients underwent 18FDG and 18FLT PET scanning. Tracer uptake within lesions was quantified using standardised uptake values (SUVs). Histopathological examination and MIB-1 immunohistochemistry were performed on all lesions, and proliferation quantified by calculating a labelling index (% of MIB-1 positively stained nuclei within 1500 tumour cells). Results: Histology confirmed adenocarcinoma in 12 of 13 lesions; the remaining lesion was reactive. All eight extrahepatic lesions were visualised using both 18FLT and 18FDG. Three of the five resected liver metastases were also avid for 18FLT and showed high proliferation, while the remaining two lesions which demonstrated no uptake of 18FLT had correspondingly very low proliferation. There was a statistically significant positive correlation (r =0.8, p<0.01) between SUVs of the tumours visualised with 18FLT and the corresponding MIB-1 labelling indices. No such correlation was demonstrated with 18FDG avid lesions (r =0.4). Conclusions: 18FLT PET correlates with cellular proliferation markers in both primary and metastatic CRC. This technique could provide a mechanism for in vivo grading of malignancy and early prediction of response to adjuvant chemotherapy

    Entrainment of the Melatonin Rhythms in Early Postnatal Lambs and Their Mothers

    Full text link
    Although the developing sheep can produce an appropriately timed melatonin rhythm as early as 1 week after birth, it is not known whether the lamb is able to adjust its melatonin rhythm to a change in daylength. The ability of the young lamb to entrain its pattern of melatonin secretion to a new photoperiod was determined in the present study. Eight female lambs and their mothers were raised in long days (LD 16:8) beginning 2 weeks post partum. At 7 weeks of age, the time of lights-off was advanced 8 hr, the short-day photoperiod then being LD 8:16; the time of lights-on remained unchanged. Concentrations of melatonin were measured in blood samples collected hourly on days - 1, 0, 2, 4, 6, and 13 relative to the light change. On day 0, all mothers and daughters had advanced the onset of melatonin secretion by at least 1 hr, and by day 13, 12 of 16 had completely entrained to the new photoperiod. The rate of entrainment among individuals varied; the mean rate for lambs and mothers did not differ. This study provides evidence that the melatonin-rhythm-generating system matures shortly after birth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68290/2/10.1177_074873048900400405.pd

    The challenges of intersectionality: Researching difference in physical education

    Get PDF
    Researching the intersection of class, race, gender, sexuality and disability raises many issues for educational research. Indeed, Maynard (2002, 33) has recently argued that ‘difference is one of the most significant, yet unresolved, issues for feminist and social thinking at the beginning of the twentieth century’. This paper reviews some of the key imperatives of working with ‘intersectional theory’ and explores the extent to these debates are informing research around difference in education and Physical Education (PE). The first part of the paper highlights some key issues in theorising and researching intersectionality before moving on to consider how difference has been addressed within PE. The paper then considers three ongoing challenges of intersectionality – bodies and embodiment, politics and practice and empirical research. The paper argues for a continued focus on the specific context of PE within education for its contribution to these questions

    Light propagation in statistically homogeneous and isotropic universes with general matter content

    Full text link
    We derive the relationship of the redshift and the angular diameter distance to the average expansion rate for universes which are statistically homogeneous and isotropic and where the distribution evolves slowly, but which have otherwise arbitrary geometry and matter content. The relevant average expansion rate is selected by the observable redshift and the assumed symmetry properties of the spacetime. We show why light deflection and shear remain small. We write down the evolution equations for the average expansion rate and discuss the validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular diameter distance and two typos. No change in result

    Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality of Plantago lanceolata L.

    Get PDF
    Intraspecific competition causes decreases in plant size and increases in size inequality. Arbuscular mycorrhizas usually increase the size and inequality of non-competing plants, but mycorrhizal effects often disappear when plants begin competing. We hypothesized that mycorrhizal effects on size inequality would be determined by the experimental conditions, and conducted simultaneous field and glasshouse experiments to investigate how AM fungi and intraspecific competition determine size inequality in Plantago lanceolata. 2 As predicted, plant size was reduced when plants were competing, in both field and controlled conditions. However, size inequality was unexpectedly reduced by competition. Plants may have competed in a symmetric fashion, probably for nutrients, rather than the more common situation, in which plant competition is strongly asymmetric. 3 Mycorrhizas had no effect on plant size or size inequality in competing plants in either field or controlled conditions, possibly because competition for nutrients was intense and negated any benefit the fungi could provide. 4 The effects of mycorrhizas on non-competing plants were also unexpected. In field-grown plants, AM fungi increased plant size, but decreased size inequality: mycorrhizal plants were more even in size, with few very small individuals. In glasshouse conditions, mycorrhizal colonization was extremely high, and was generally antagonistic, causing a reduction in plant size. Here, however, mycorrhizas caused an increase in size inequality, supporting our original hypothesis. This was because most plants were heavily colonized and small, but a few had low levels of colonization and grew relatively large. 5 This study has important implications for understanding the forces that structure plant communities. AM fungi can have a variety of effects on size inequality and thus potentially important influences on long-term plant population dynamics, by affecting the genetic contribution of individuals to the next generation. However, these effects differ, depending on whether plants are competing or not, the degree of mycorrhizal colonization and the responsiveness of the plant to different colonization densities

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore