39 research outputs found

    Costs and quality of life for prehabilitation and early rehabilitation after surgery of the lumbar spine

    Get PDF
    During the recent years improved operation techniques and administrative procedures have been developed for early rehabilitation. At the same time preoperative lifestyle intervention (prehabilitation) has revealed a large potential for additional risk reduction

    Oncoplastic breast consortium recommendations for mastectomy and whole breast reconstruction in the setting of post-mastectomy radiation therapy

    Get PDF
    Aim: Demand for nipple-and skin-sparing mastectomy (NSM/SSM) with immediate breast reconstruction (BR) has increased at the same time as indications for post-mastectomy radiation therapy (PMRT) have broadened. The aim of the Oncoplastic Breast Consortium initiative was to address relevant questions arising with this clinically challenging scenario. Methods: A large global panel of oncologic, oncoplastic and reconstructive breast surgeons, patient advocates and radiation oncologists developed recommendations for clinical practice in an iterative process based on the principles of Delphi methodology. Results: The panel agreed that surgical technique for NSM/SSM should not be formally modified when PMRT is planned with preference for autologous over implant-based BR due to lower risk of long-term complications and support for immediate and delayed-immediate reconstructive approaches. Nevertheless, it was strongly believed that PMRT is not an absolute contraindication for implant-based or other types of BR, but no specific recom-mendations regarding implant positioning, use of mesh or timing were made due to absence of high-quality evidence. The panel endorsed use of patient-reported outcomes in clinical practice. It was acknowledged that the shape and size of reconstructed breasts can hinder radiotherapy planning and attention to details of PMRT techniques is important in determining aesthetic outcomes after immediate BR. Conclusions: The panel endorsed the need for prospective, ideally randomised phase III studies and for surgical and radiation oncology teams to work together for determination of optimal sequencing and techniques for PMRT for each patient in the context of BRPeer reviewe

    Dietary reference values for vitamin K

    Get PDF
    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derives dietary reference values (DRVs) for vitamin K. In this Opinion, the Panel considers vitamin K to comprise both phylloquinone and menaquinones. The Panel considers that none of the biomarkers of vitamin K intake or status is suitable by itself to derive DRVs for vitamin K. Several health outcomes possibly associated with vitamin K intake were also considered but data could not be used to establish DRVs. The Panel considers that average requirements and population reference intakes for vitamin K cannot be derived for adults, infants and children, and therefore sets adequate intakes (AIs). The Panel considers that available evidence on occurrence, absorption, function and content in the body or organs of menaquinones is insufficient, and, therefore, sets AIs for phylloquinone only. Having assessed additional evidence available since 1993 in particular related to biomarkers, intake data and the factorial approach, which all are associated with considerable uncertainties, the Panel maintains the reference value proposed by the Scientific Committee for Food (SCF) in 1993. An AI of 1 mu g phylloquinone/kg body weight per day is set for all age and sex population groups. Considering the respective reference body weights, AIs for phylloquinone are set at 70 mu g/day for all adults including pregnant and lactating women, at 10 mu g/day for infants aged 7-11 months, and between 12 mu g/day for children aged 1-3 years and 65 mu g/day for children aged 15-17 years. (C) 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority

    Cell-based tissue engineering strategies used in the clinical repair of articular cartilage

    Full text link
    One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of review articles on the paradigm of biomaterials, signals, and cells, it is reported that 90% of new drugs that advance past animal studies fail clinical trials (1). The intent of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by fully understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products

    Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells

    Full text link
    corecore