187 research outputs found

    Дисплазия желудочно-кишечного тракта

    Get PDF
    Рассмотрены возможности прижизненного (дооперационного) изучения состояния слизистой оболочки желудочно−кишечного тракта, дисплазия его эпителия как один из факторов риска возникновения злокачественного образования.Розглянуто можливості прижиттєвого (доопераційного) вивчення стану слизової оболонки шлунково−кишкового тракту, дисплазію його епітелію як один із факторів ризику виникнення злоякісного утворення.The capabilities of vital (preoperative) examination of the state of the gastrointestinal mucosa, epithelial dysplasia as one of the risk factors of malignancy were analyzed

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Molecular Modeling-Based Evaluation of hTLR10 and Identification of Potential Ligands in Toll-Like Receptor Signaling

    Get PDF
    Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogens based on distinct molecular signatures. The human (h)TLR1, 2, 6 and 10 belong to the hTLR1 subfamilies, which are localized in the extracellular regions and activated in response to diverse ligand molecules. Due to the unavailability of the hTLR10 crystal structure, the understanding of its homo and heterodimerization with hTLR2 and hTLR1 and the ligand responsible for its activation is limited. To improve our understanding of the TLR10 receptor-ligand interaction, we used homology modeling to construct a three dimensional (3D) structure of hTLR10 and refined the model through molecular dynamics (MD) simulations. We utilized the optimized structures for the molecular docking in order to identify the potential site of interactions between the homo and heterodimer (hTLR10/2 and hTLR10/1). The docked complexes were then used for interaction with ligands (Pam3CSK4 and PamCysPamSK4) using MOE-Dock and ASEDock. Our docking studies have shown the binding orientations of hTLR10 heterodimer to be similar with other TLR2 family members. However, the binding orientation of hTLR10 homodimer is different from the heterodimer due to the presence of negative charged surfaces at the LRR11-14, thereby providing a specific cavity for ligand binding. Moreover, the multiple protein-ligand docking approach revealed that Pam3CSK4 might be the ligand for the hTLR10/2 complex and PamCysPamSK4, a di-acylated peptide, might activate hTLR10/1 hetero and hTLR10 homodimer. Therefore, the current modeled complexes can be a useful tool for further experimental studies on TLR biology

    Zebrafish homologs of 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes

    Get PDF
    Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs), intellectual disability disorder (IDD) and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV). The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed 'dosage sensors'), which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development - impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa) and kinesin family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels were reduced by ~50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least) two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.Simons Foundation (Grant Number 95091

    C-Type Lectin in Chlamys farreri (CfLec-1) Mediating Immune Recognition and Opsonization

    Get PDF
    Background: C-type lectins are a superfamily of Ca 2+ dependent carbohydrate-recognition proteins that play significant diverse roles in nonself-recognition and clearance of invaders. Though they are well characterized in vertebrates, the study of the potential function and mechanism of C-type lectins in invertebrate immunity is still in its infancy. Methodology: A C-type lectin (CfLec-1) from scallop Chlamys farreri, a dominant cultured mollusk species in China, was selected to investigate its mRNA expression, localization and the possible functions in innate immunity in the present study. After scallop was stimulated by three typical PAMPs, the mRNA expression of CfLec-1 in hemocytes was poles apart. It was significantly up-regulated (p,0.01) after scallops were stimulated by LPS or b-glucan, but significantly down-regulated (p,0.01) after PGN stimulation. The binding ability of recombinant CfLec-1 (designated as rCfLec-1) towards eight PAMPs was investigated subsequently by PAMPs microarray, which revealed rCfLec-1 could bind LPS, PGN and mannan in vitro, indicating CfLec-1 served as a PRR involved in the pathogen recognition. Immunofluorescence assay with polyclonal antibody specific for CfLec-1 revealed that CfLec-1 was mainly located in the mantle and gill of the scallop. CfLec-1 could bind to the surface of scallop hemocytes and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-1 antibody. Meanwhile, rCfLec-1 could also enhance the phagocytic activity of scallop hemocytes against Escherichia coli

    Lack of an Antibacterial Response Defect in Drosophila Toll-9 Mutant

    Get PDF
    Toll and Toll-like receptors represent families of receptors involved in mediating innate immunity response in insects and mammals. Although Drosophila proteome contains multiple Toll paralogs, Toll-1 is, so far, the only receptor to which an immune role has been attributed. In contrast, every single mammalian TLR is a key membrane receptor upstream of the vertebrate immune signaling cascades. The prevailing view is that TLR-mediated immunity is ancient. Structural analysis reveals that Drosophila Toll-9 is the most closely related to vertebrate TLRs and utilizes similar signaling components as Toll-1. This suggests that Toll-9 could be an ancestor of TLR-like receptors and could have immune function. Consistently, it has been reported that over-expression of Toll-9 in immune tissues is sufficient to induce the expression of some antimicrobial peptides in flies. These results have led to the idea that Toll-9 could be a constitutively active receptor that maintain significant levels of antimicrobial molecules and therefore provide constant basal protection against micro-organisms. To test theses hypotheses, we generated and analyzed phenotypes associated with a complete loss-of-function allele of Toll-9. Our results suggest that Toll-9 is neither required to maintain a basal anti-microbial response nor to mount an efficient immune response to bacterial infection

    The Herpes Simplex Virus-1 Transactivator Infected Cell Protein-4 Drives VEGF-A Dependent Neovascularization

    Get PDF
    Herpes simplex virus-1 (HSV-1) causes lifelong infection affecting between 50 and 90% of the global population. In addition to causing dermal lesions, HSV-1 is a leading cause of blindness resulting from recurrent corneal infection. Corneal disease is characterized by loss of corneal immunologic privilege and extensive neovascularization driven by vascular endothelial growth factor-A (VEGF-A). In the current study, we identify HSV-1 infected cells as the dominant source of VEGF-A during acute infection, and VEGF-A transcription did not require TLR signaling or MAP kinase activation. Rather than being an innate response to the pathogen, VEGF-A transcription was directly activated by the HSV-1 encoded immediate early transcription factor, ICP4. ICP4 bound the proximal human VEGF-A promoter and was sufficient to promote transcription. Transcriptional activation also required cis GC-box elements common to the VEGF-A promoter and HSV-1 early genes. Our results suggest that the neovascularization characteristic of ocular HSV-1 disease is a direct result of HSV-1's major transcriptional regulator, ICP4, and similarities between the VEGF-A promoter and those of HSV-1 early genes

    Natural Products as Anti-HIV Agents and Role in HIV-Associated Neurocognitive Disorders (HAND): A Brief Overview

    Get PDF
    As the threat of Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS) persists to rise, effective drug treatments are required to treat the infected people. Even though combination antiretroviral therapy (cART) provides stable viral suppression, it is not devoid of undesirable side effects, especially in persons undergoing long-term treatment. The present therapy finds its limitations in the emergence of multidrug resistance and accordingly finding new drugs and novel targets is the need of the hour to treat the infected persons and further to attack HIV reservoirs in the body like brain, lymph nodes to achieve the ultimate goal of complete eradication of HIV and AIDS. Natural products such as plant-originated compounds and plant extracts have enormous potential to become drug leads with anti-HIV and neuroprotective activity. Accordingly, many research groups are exploring the biodiversity of the plant kingdom to find new and better anti-HIV drugs with novel mechanisms of action and for HIV-associated neurocognitive disorders (HAND). The basic challenge that still persists is to develop viral replication-targeted therapy using novel anti-HIV compounds with new mode of action, accepted toxicity and less resistance profile. Against this backdrop, the World Health Organization (WHO) suggested the need to evaluate ethno-medicines for the management of HIV/AIDS. Consequently, there is need to evaluate traditional medicine, particularly medicinal plants and other natural products that may yield effective and affordable therapeutic agents. Although there are a good number of reports on traditional uses of plants to treat various diseases, knowledge of herbal remedies used to manage HIV/AIDS and HAND are scanty, vague and not well documented. In this review, plant substances showing a promising action that is anti-HIV and HAND will be explored along with what they interact. Since some plant substances are also known to modulate several cellular factors which are also involved in the replication of HIV and hence their role as potential candidates will be discussed. HIV/AIDS being an exceptional epidemic, demands an exceptional approach and that forms very much focus for the current review
    corecore