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SUMMARY 

Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with 

impaired brain function, including autism spectrum disorders (ASD), intellectual disability disorder 

(IDD), and other phenotypes, indicating the importance of gene dosage in this copy number variant region 

(CNV). The core of this CNV includes 25 genes, however, the number of genes that contribute to these 

phenotypes is not known. Further, genes whose functional levels change with deletion or duplication 

(termed “dosage sensors”), which may associate the CNV with pathologies, have not been identified. 

Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 

12.  Use of eleven phenotypic assays, spanning the first five days of development, demonstrates that this 

set of genes is highly active, such that 21 out of 22 homologs tested show loss of function phenotypes. 

Most genes are required for nervous system development – impacting brain morphology, eye 

development, axonal density or organization, and motor response. In general, human genes can substitute 

for the fish homolog, demonstrating orthology, and consistent with conserved molecular pathways. In a 

screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoa) and kinesin 

family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels are reduced 

by ~50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. 

The first is that the 16p11.2 region comprises a highly active set of genes, which may present a large 

genetic target, and may explain why multiple brain function and other phenotypes are associated with this 

interval.  The second major finding is that there are (at least) two genes with deletion dosage sensor 

properties amongst the 16p11.2 set, which may link this CNV to brain disorders including ASD and IDD. 
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INTRODUCTION 

 Copy number variation (CNV), where intervals of the genome are deleted or duplicated, has been 

associated with multiple human diseases including infectious, autoimmune and neuropsychiatric disorders 

(Fanciulli et al., 2010). The 16p11.2 CNV comprises two direct repeats of 143 kbp and a central core of 

593 kbp, which includes 25 putative protein-coding genes (Ghebranious et al., 2007; Sebat et al., 2007), 

and is associated with a multitude of disorders, most commonly with speech/developmental delay (often 

characteristics of intellectual disability disorder (IDD)) (85% of deletion carriers) and autism spectrum 

disorders (ASD, 19-28% of deletion carriers) (Ciuladaite et al., 2011; The Simons Vip, 2012). In addition 

to IDD (Bijlsma et al., 2009) and ASD (Kumar et al., 2008; Marshall et al., 2008; Weiss et al., 2008), 

deletion and/or duplication of 16p11.2 are associated with seizure disorder (Ghebranious et al., 2007), 

obesity or being underweight (Jacquemont et al., 2011), macro- or microcephaly (Shinawi et al., 2010), 

schizophrenia (McCarthy et al., 2009), ADHD (Lionel et al., 2011), eye anomalies (Bardakjian et al., 

2010), heart disorders (Puvabanditsin et al., 2010), vertebral abnormalities (Shimojima et al., 2009), and 

severe combined immunodeficiency (Shiow et al., 2009). Smaller deletions within this region are also 

associated with pathologies, including ASD (Crepel et al., 2011) and abnormal sexual development 

(Tannour-Louet et al., 2010). 16p11.2 copy number changes generally occur de novo, during meiosis 

(Sebat et al., 2007), and the paucity of inherited changes indicates its importance for normal health and 

reproduction (Levy et al., 2011; Weiss et al., 2008). Consistently, mice hemizygous for the 16p11.2 

homologs exhibit a 50% rate of neonatal lethality (Horev et al., 2011). 

 A key general question is how many genes in a CNV contribute to an associated disorder. In the 

most direct case, duplication or deletion of a gene would increase or decrease cognate RNA and protein 

levels proportionally, and this change would be pivotal in development of the pathology (Nord et al., 

2011).  We term genes with such properties “dosage sensors.” In other cases, structural effects caused by 

the chromosomal rearrangement may contribute to a phenotype (Ricard et al., 2010). For the 16p11.2 
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region, a mouse model in the syntenic region shows that levels of brain expression in 79% of genes were 

affected by deletion or duplication, as predicted by gene dosage (Horev et al., 2011). Further supporting 

the notion of dosage sensitivity, in human patients, 16p11.2 duplication or deletion is sometimes 

correlated with reciprocal phenotypes, such that obesity and macrocephaly are associated with 16p11.2 

deficiency, being underweight and microcephaly with duplication (Jacquemont et al., 2011; Shinawi et al., 

2010). Similarly, opposite phenotypes exist in the hemizygous 16p11.2 region mice compared to mice 

containing the duplication, including brain volume and certain behaviors (Horev et al., 2011).   

 In this study, we use the zebrafish to analyze activity of 16p11.2 CNV genes, and to identify gene 

dosage sensors within this region. Although many abnormalities are linked to 16p11.2 CNVs, we are 

interested in the high prevalence of associated brain disorders, with particular interest in the CNV’s 

connection to ASD. Specifically, the 16p11.2 CNV is by far the most prevalent CNV to be associated 

with ASD (Sanders et al., 2011), contributing to ~1% of ASD cases. Zebrafish do not have the same 

behavioral repertoire as humans, and therefore have limitations in comparable assays for behaviors 

associated with human disorders.  However, the zebrafish genome is similar to that of the human, and 

molecular pathways engaged by homologous mammalian and fish genes are conserved. We therefore 

termed the zebrafish a “tool”, rather than a phenotypic model, for analysis of brain disorders (Sive, 2011). 

The zebrafish allows rapid functional analysis of many genes, at a rate unprecedented in mouse, due to the 

ability to obtain many embryos and to inhibit gene function in the whole embryo by injection of antisense 

oligonucleotides. There are indications that many functional brain disorders, including ASD and IDD, are 

developmental in nature, since they present soon after birth (Konopka et al., 2012; Ploeger et al., 2010). 

However, maintenance of brain structure, or faulty brain function after birth may play key roles in 

etiology of these disorders (Okado et al., 2001; Trembath, 1994). The most accessible time window for 

analysis in the zebrafish is the first five days of development, which covers the equivalent of several 

weeks in mice and a couple of years in humans, potentially addressing both developmental and later gene 
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function. Thus, results from zebrafish assays can provide useful data suggesting more targeted 

mammalian studies. 

We show here that most individual zebrafish 16p11.2 homologs are required for normal brain and 

body development, and that their function is conserved with the human gene. We also show that zebrafish 

16p11.2 homologs include at least two genes with deletion dosage sensor properties, potentially linking 

hemizygosity of the interval with human phenotypic presentations such as ASD and IDD.   

 

RESULTS 
 
Conservation and expression of zebrafish 16p11.2 homologs   

In order to use the zebrafish as an effective tool for functional analysis of the 16p11.2 CNV, we 

used the strategy shown in Fig. 1A. The 16p11.2 core spans 593 kbp and includes twenty-five protein-

coding genes.  Twenty-one of these genes in the human interval were identified in the zebrafish genome 

(Fig. 1B).  Of the remaining genes, SPN, TMEM, and C16ORF54 are limited to mammals.  SPN has a 

regulatory role in adaptive immunity (Kyoizumi et al., 2004), whereas TMEM and C16ORF54 are of 

unknown function and all three are of unknown importance in neurodevelopment. Finally, QPRT has a 

teleost homolog in Fugu (52% identity to the human protein) and Medaka (54% identity to the human 

protein), suggesting that a zebrafish homolog exists, but is not yet annotated in the genome.  

Zebrafish homologs are clustered on either chromosome 3 or 12, previously identified as the 

genomic counterparts of human chromosome 16 (Taylor et al., 2003), with the exception of ino80e, which 

is located on chromosome 16 (Table S1). These regions are not syntenic with human chromosome 16, 

since gene order is not conserved. Two sets of syntenic genes were found on chromosome 3; one region 

comprises kctd13, sez6l2 and asphd1, where the order is not conserved with human; and mapk3, gdpd3, 

and ypel3, where the order is conserved. Interestingly, the first set of syntenic genes (kctd13, sez6l2, and 

asphd1) is found in a microdeletion associated with ASD (Crepel et al., 2011).  
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Five homologs were present in two copies (aldoa, fam57b, gdpd3, ppp4c and taok2) reflecting the 

partial duplication of the teleost genome (Postlethwait et al., 2000). Genes in each pair had similar but not 

identical sequences (Table S1), with one found on zebrafish chromosome 12 and the other on 

chromosome 3. Such duplication may result in split or divergent function of the gene (Yamamoto and 

Vernier, 2011).  

In order to determine when zebrafish 16p11.2 homologs are expressed, temporal expression was 

analyzed by RT-PCR (see Methods, Fig. S1A, Table S2). Most genes are expressed maternally and 

zygotically, at least until 48 hours post fertilization (hpf). asphd1, doc2a, prrt2, and sez6l2 are expressed 

only zygotically. Whole mount in situ hybridization (Fig. S1B) showed that all genes, except tbx24, are 

expressed in the brain at 24 hpf (Thisse, 2005). 

These data indicate that the zebrafish genome includes homologs of 84% of the human 16p11.2 

core genes, arranged primarily on two homologous chromosomes. Homologs are all expressed during the 

first 48 hours of development, as the brain and other organs are forming, with almost all genes showing 

some expression in the brain. Expression data, chromosomal arrangement of the genes, and their sequence 

conservation with human, indicate that this gene set is appropriate for further analysis.  

 

Changes in brain and body morphology accompany loss of function in 16p11.2 homologs   

In order to determine which zebrafish 16p11.2 homologs were active as the brain formed and 

began to function, we screened these for activity during brain development, from 24 hpf through 5 days 

post-fertilization (dpf), the human developmental equivalent of five weeks of gestation to toddlerhood. 

Loss of function (LOF) was performed by injection of antisense morpholino oligonucleotides (MOs) into 

one to two cell embryos. Where possible, MOs binding to an exon/intron boundary were utilized (Table 1, 

Table S2), to target zygotic RNA.  Where a splice site MO did not give a phenotype, a MO directed 

against the translational start site was tested to determine whether maternal RNA could have prevented 

observing a phenotype with a splice site MO (Table 1, Table S2) and the resulting effects on predicted 
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protein are included in Table 2. Where two copies of a gene had been characterized, in some cases, only 

one was highly expressed in the brain and this was assayed for a LOF phenotype. In the case of taok2, 

both genes showed strong brain expression (Fig. S1), and both were assayed. Thus, twenty-two genes 

were tested for LOF phenotypes. 

MO methodology is rapid and allows functional analysis of many genes, however, specificity of 

phenotypes associated with MOs was carefully tested, as off target effects can sometimes be observed 

(Bedell et al., 2011; Eisen and Smith, 2008). The criteria employed to test specificity were as follows, and 

are described more fully in Methods, with results documented in Table 1, and quantified in Table 2 and 

Table 3. First, for MOs targeting a splice donor or acceptor site, a change in RNA splicing and coding 

capacity should be observed. Second, the corresponding amount of normal RNA should be reduced, and a 

phenotype should correlate with RNA reduction. Use of splice site MOs allows these assays to be 

performed quantitatively, as normal RNA can be distinguished from abnormally spliced RNA. Third, a 

key assay for specificity is the ability of RNA derived from the corresponding human or zebrafish cDNA 

to prevent the LOF phenotype, when co-injected with the appropriate MO. Such “rescue” RNAs do not 

contain the MO binding site, due to species differences or because the MO binding site lies across a splice 

junction. Fourth, off-target effects of MOs may cause cell death, which can effectively be suppressed by 

injection of a p53 MO (Robu et al., 2007). Where severe phenotypes were observed, the effect of p53 

suppression is tested and if a resulting phenotype was milder, it is the one scored. Finally, comparison of a 

phenotype obtained with MOs is compared to mutants (or shRNAs) to test similarity of phenotypes. Since 

mutants are available for a very limited number of genes, we focused on MO-mediated LOF, which is the 

most feasible way to assay the activity of the large 16p11.2 gene set.  

LOF embryos were first examined at 24 hpf for brain morphology, after injection of the brain 

ventricles with Texas Red dextran (Gutzman and Sive, 2009), and scored for brain shape, presence of 

forebrain, midbrain and hindbrain hingepoints, brain ventricle size, forebrain truncation, and eye 

morphology. Tail and body phenotypes were assayed as additional indicators. For each gene, each 
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phenotype reported was observed in at least two independent experiments, and observed for at least 70% 

of embryos examined, using MO amounts that had been titrated (Table 2) and gave a clear phenotype 

(with quantification presented in Table S3).  

Strikingly, LOF for almost all genes (twenty out of twenty-two assayed), with the exception of 

prrt2 and tbx24, led to changes in brain or eye morphology (Fig. 2A, Fig. 3, Table S3). These phenotypes 

are characterized further in Fig. 2B,C. tbx24 LOF was associated only with a tail phenotype, consistent 

with a lack of brain expression of this gene, and with the mutant phenotype (Fig. S2), (Thisse, 2005). 

Thus, a total of twenty-one out of twenty-two genes examined gave a LOF phenotype. In addition to their 

brain phenotypes, LOF in all but six genes (cdipt, doc2a, fam57ba, kctd13, prrt2, and taok2a) led to tail 

or body defects, including failure of the yolk cell to extend, a short, bent tail and abnormally shaped 

muscle segments (Fig. 2A, Fig. 3, Table S3). Several genes gave very strong phenotypes, suggesting early 

embryonic defects.  In particular, coro1a, ino80e, mapk3 and mvp “morphants” (defined as LOF embryos 

caused by MO injection) showed abnormal body length and defective neural tubes. mapk3 LOF embryos 

showed a defective forebrain, eyes, and a short body, consistent with a recent study (Krens et al., 2008). 

coro1a, maz and fam57ba morphants have small eye cups with protruding lenses (Schmitt and Dowling, 

1994). LOF in asphd1 and sez6l2 gave weak phenotypes, while no phenotype was observed after prrt2 

LOF. Since prrt2 is not highly expressed until 48 hpf, gene function may be required later (Fig. S1A).  

Two clear groups of brain morphology phenotypes were apparent (Fig. 2B,C).  LOF in the first 

group of genes was associated with reduced brain ventricle size, and the midbrain-hindbrain boundary 

(MHB) was less sharply defined than in controls.  This group includes c16orf53, cdipt, doc2a, hirip3, 

kctd13, and taok2b (Fig. 2B), which have not previously been shown to regulate brain morphology, 

although cdipt is required later in lens and photoreceptor development in zebrafish (Murphy et al., 2011), 

and Doc2a is a modulator of synaptic transmission in mice (Yao et al., 2011). These phenotypes may 

result from changes in neuroepithelial specification, morphogenesis, or reduction in cerebrospinal fluid 

volume (Gato and Desmond, 2009; Lowery and Sive, 2009). 
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A second group of genes leading to defective brain morphology after LOF showed a straight 

midbrain (Fig. 2C), where the midbrain hingepoint was essentially absent. This phenotype was seen in 

aldoaa, fam57ba, gdpd3, maz, ppp4ca, and ypel3 morphants, a group of genes with previously undefined 

contributions to brain development.  gdpd3, ppp4ca and ypel3 LOF embryos showed a wider opening at 

the MHB, relative to the narrowing seen in control embryos.  A subset of embryos from both groups 

showed a narrowed forebrain, such as those seen in aldoaa, fam57ba, and maz LOF embryos, while the 

area rostral of the eyes was reduced after fam57ba, gdpd3, hirip3, and maz LOF. Expression of pax2a at 

the MHB was normal, indicating correct specification of this region, and suggesting that later steps 

resulted in the phenotypes observed (not shown). Although the groupings shown in Figs. 2B,C suggest 

similar contribution to brain development by all genes in the group, close comparison reveals distinct 

phenotypes; for example, aldoaa and ypel3 morphants have similar midbrain phenotypes, but MHB and 

hindbrain phenotypes are unique. 

For all but three genes, co-injection of RNA derived from the human cDNA together with the MO 

generally restored the phenotype, indicating fish/human orthology, and confirming the specificity of the 

phenotype (Tables 1 and 3, Fig. 4). For kctd13 and maz, the zebrafish, but not the human gene, rescued 

the LOF phenotype. mvp LOF gave a similar phenotype with three tested MOs, but was not reproducibly 

rescued by fish or human cDNAs, perhaps reflecting a stoichiometric requirement for other components 

with which mvp complexes (Berger et al., 2009). Embryos were scored as rescued if morphological and 

behavioral phenotypes were ameliorated in ~ 50% or more embryos (see Fig. 4 and Table 3).  For strong 

phenotypes, such as gdpd3 and mapk3 LOF, rescues vastly improved brain and body morphology, but did 

not fully restore a wildtype phenotype. Assays for rescue included observation of the shape of the brain, 

ventricle size, and eye morphology, movement and axon tracts. 

In summary, twenty-one out of twenty-two zebrafish 16p11.2 homologs tested are required for 

early brain and/or body development, with the majority showing conserved function with the cognate 

human gene. The data therefore show that this set of genes is highly active during early development. 
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Movement deficiency is associated with loss of function in some 16p11.2 homologs 

We next assessed motor function as a read-out of neural circuitry, by assaying two early 

behaviors: spontaneous movement at 24 hpf and the touch response at 48 hpf as described in Methods 

(Liu et al., 2012; Naganawa and Hirata, 2011). LOF in seven genes (coro1a, fam57ba, gdpd3, hirip3, 

kif22, maz and ppp4ca) was associated with spontaneous movement defects. LOF in fourteen genes led to 

a defect in touch response in at least 70% of embryos for each gene examined (Fig. 3, Table S3). In the 

most severe cases, aldoaa and fam57ba, LOF embryos exhibited no response to touch, and these severe 

phenotypes were rescued by co-injection with human RNA. A sluggish response to touch, rather than the 

normal rapid C-bend and brief swim, was observed in coro1a, gdpd3, hirip3, kctd13, kif22, maz, and 

ppp4ca morphants. The response to touch is improved by the addition of rescue RNA. Abnormal, U-

shaped muscle segments and/or a short, bent tail were seen in the spontaneous movement- and touch 

response-defective aldoaa, coro1a, fam57ba, gdpd3, kif22 and hirip3 LOF embryos, perhaps explaining 

the movement defects (Fig. 2A, Fig. 3, Table S3). These data indicate that multiple 16p11.2 homologs 

were required for normal motor activity, as reflected by spontaneous movement or touch-responsiveness.  

 

A subset of genes is required for normal axon tract development 

Motor deficiencies observed in LOF embryos led us to ask whether axon tract formation is 

affected. Both forebrain and hindbrain axon tracts were analyzed by immunostaining for acetylated α-

tubulin and confocal imaging at 36 hpf, when initial scaffolding has formed (Fig. 5). Embryos with 

deficient axon tracts were seen in more than 80% of embryos, after LOF in each of six genes: coro1a, 

fam57ba, kctd13, kif22, mapk3 and ppp4ca (Fig. 5, and quantification in legend). LOF in all of these 

genes led to reduced and disorganized tracts, however the kctd13 LOF forebrain tract phenotype was 

mild, and kif22 LOF hindbrain tracts appeared normal. For each gene, normal phenotypes were observed 

in at least 75% of embryos examined after co-injection of cognate human mRNA (or fish mRNA for 
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kctd13) with the antisense MO, further supporting conservation of function and specificity of the axon 

tract phenotypes caused by MO injection (Fig. 5).  

In addition to brain axon tract deficiencies, we demonstrated that pigmentation, indicative of 

neural crest lineages that include peripheral nerves (Schilling and Kimmel, 1994), was abnormal after 

LOF in a subset of homologs (Fig. S3). Some of these also presented with axon tract abnormalities 

(coro1a, fam57ba, mapk3 and ppp4ca). Interestingly, for six genes (coro1a, fam57ba, kctd13, kif22, 

mapk3 and ppp4ca) where LOF gave a movement or touch response phenotype, an axon tract and/or 

pigmentation defect was also apparent (Fig. 3), perhaps connecting these phenotypes to the abnormal 

behavior (An et al., 2002; Haffter et al., 1996; Marmigere and Ernfors, 2007). For four genes (maz, mvp, 

tbx24 and ypel3), a touch response phenotype seen after LOF was not accompanied by axon tract or 

pigmentation aberrations, implicating abnormal muscle activity in the phenotype. However, while axon 

tracts may appear normal, synaptic transmission may be defective. These data show that multiple 16p11.2 

homologs are necessary for normal axon tract development – suggesting deficits in formation of neuronal 

precursors, guidance, or fasciculation – and that axonal deficiencies may be linked to motor phenotypes. 

 

Identification of aldoaa and kif22 as deletion dosage sensor genes  

 A major goal of this study was to determine whether any 16p11.2 homologs had the properties 

of deletion dosage sensors, which may be associated with IDD, ASD and other phenotypes.  We define a 

deletion dosage sensor as a gene that gives a phenotype after a 50% decrease in expression, in accord with 

the simplest outcome of loss of one gene copy. Our initial assays for function of 16p11.2 homologs (Figs. 

2,3) used MO concentrations that led to a clear phenotype, however, the associated decreases in RNA 

expression were not determined. In order to identify whether any of these genes are deletion dosage 

sensors, we assessed the lowest dose of MO that led to a phenotype, and quantified the amount of normal 

RNA remaining at this concentration using qPCR (Fig. 6). This approach was used for the fourteen genes 

whose function was inhibited by splice site MOs, where abnormal splicing had been detected and the 
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normal and abnormal transcript could be distinguished, using appropriate primers (Fig. 6B, Table 1, Table 

S2).  Due to standard error intrinsic to the qPCR process, genes were designated putative deletion dosage 

sensors if a phenotype was observed when between 40% and 60% normal RNA remained, although a 

deletion dosage sensor could also be sensitive to smaller decreases in expression (>60% of RNA 

remaining). 

Most genes tested showed a LOF phenotype only when 25% or less normally spliced RNA 

remained (Fig. 6C). However, two genes, aldoaa and kif22, were reproducibly associated with a 

phenotype when approximately 45% RNA remained for aldoaa and 55% RNA remained for kif22 (Fig. 

6C), suggesting that these genes are deletion dosage sensors. Although RNA levels were initially 

quantified at 24 hpf, approximately 50% of normal levels were present also at 18 and 36 hpf (Fig. 6D) 

(for aldoaa and kif22 respectively, 64% and 52% of normal levels were present at 18 hpf, and 67% and 

41% of normal levels were present at 36 hpf). Importantly, the decrease in RNA expression was mirrored 

at the protein level, where Western blot analysis showed a 56% and 65% loss of Aldoaa and Kif22 protein 

expression, respectively, after MO injection (Fig. 6E).  

The sensitivity of embryos to aldoaa and kif22 to 50% LOF led us to examine the phenotypes 

obtained in more detail. Thus, abnormal muscle segment formation (Fig. 2) was further characterized after 

phalloidin staining, which showed U-shaped muscle segments, as well as muscle fibers that were wavy 

and poorly aligned (Fig. 6F). Since the brains in both aldoaa and kif22 LOF embryos appeared narrow 

(Fig. 2A), we asked whether formation of neural progenitors was affected at 48 hpf, using a transgenic 

line with GFP driven by the promoter of NeuroD, a pan neuronal transcription factor (Obholzer et al., 

2008; Ulitsky et al., 2011). After LOF in both aldoaa and kif22, NeuroD promoter-driven expression of 

GFP was decreased in the eyes and optic tectum, whereas expression in the cranial neurons and pancreas 

appeared unaffected (Fig. 6G).  

These data indicate that most zebrafish homologs in the 16p11.2 cohort do not have the 

characteristics of deletion dosage sensors. However, the aldolase a (aldoaa) and kinesin family member 
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22 (kif22) genes each show a robust phenotype at 50% LOF, which may indicate the effects of genetic 

hemizygosity at these loci, and designate these genes as putative deletion dosage sensors.   

 

Tissue-specific shRNA expression indicates nervous system function for aldoaa and kif22 

 In order to address whether the effects of aldoaa and kif22 LOF were due directly to changes in 

expression within the brain, or secondarily, due to effects on other tissues, shRNAs targeting these genes 

were expressed in the zebrafish brain. We used the central nervous system-specific miR124 promoter (De 

Rienzo et al., 2011; Shkumatava et al., 2009), and expressed shRNAs from the miR30 backbone (see 

Methods, (Dong et al., 2009), (De Rienzo et al., in preparation), (Fig. 7A). By testing four hairpins against 

either aldoaa or kif22, a targeting construct was identified for each gene. These constructs reduced normal 

RNA levels to 46% for aldoaa and 42% for kif22 when normalized to GFP in the whole embryo 

(reflecting total number of cells expressing the shRNA) or 64% for aldoaa and 57% for kif22 when 

normalized to β-actin in microdissected brain (reflecting total brain RNA) (Fig. 7B, 7D). For aldoaa, a 

phenotype very similar to that of the antisense MO was observed, such that touch response was highly 

defective (Fig. 7B), and the forebrain was narrow (Fig. 7C). However, the tail and muscle segment 

phenotype was not observed, in accord with nervous system-specific expression of this shRNA. The kif22 

RNAi phenotype was very similar to that seen with the antisense MO, including abnormal brain 

morphology and a bent tail (Fig. 7E). The persistent bent tail phenotype, even after nervous system-

specific expression of the kif22 shRNA, likely reflects defective convergence and extension that can be 

modulated by kif22 activity in the spinal cord (De Rienzo et al., 2011). 

These shRNA data further confirm specificity of the aldoaa and kif22 phenotypes observed using 

MOs. Similar confirmation of phenotypes obtained from MO injection or genetic mutants was seen for 

the cdipt and tbx24 genes (Fig. S2). In sum, the data demonstrate that the phenotypes observed after 

aldoaa and kif22 function are consistently seen after 50% LOF, and are due to activity of these genes in 

the brain. 
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DISCUSSION 

This study has uncovered two novel and fundamental aspects of genes within the 16p11.2 CNV. 

The first major finding is that the 16p11.2 set of genes is highly active and necessary for early 

development, indicating that the set presents a large genetic target, which may explain the penetrant 

association of 16p11.2 with multiple brain disorders and other phenotypes. The second major finding is 

that, amongst the 16p11.2 set, there are (at least) two single genes with deletion dosage sensor properties, 

which may link this CNV to ASD, IDD and other disorders.  

The finding that the majority of 16p11.2 homologs is required for normal embryonic nervous 

system and body development is consistent with the early onset of some of these disorders, which may 

suggest that key genes underlying the disorder have developmental roles. Alternately, key disorder genes 

may govern maintenance of aspects of the brain, or lead to a postnatal change in brain function. The 

finding that LOF for a majority of these genes results in persistent phenotypes through 5 dpf may imply 

that these are important for maintenance and continued function, however, we did not distinguish whether 

different mechanisms underlie early and later phenotypes. We further note that LOF phenotypes observed 

after extensive RNA knockdown will generally be more severe than those seen in hemizygous mutant fish 

or human patients. Thus, developmental phenotypes may be present after extensive knockdown, whereas 

after partial LOF, later brain function may be altered, with no apparent change to development. By 

comparison with zebrafish genetic screens, where approximately 10% of genes give an embryonic 

phenotype after mutation (Jiang et al., 1996; Schier et al., 1996), 95% of the genes tested here gave a LOF 

phenotype, almost all including the brain, suggesting that the multitude of phenotypes associated with 

16p11.2 CNV reflects activity of many genes. While the MOs used for LOF assays may sensitize the 

embryo due to their unusual nucleic acid backbone, phenotypes we observed were specific, and where 

tested, similar to that of genetic mutants (as seen in other studies, for example, De Rienzo et al., 2011). 

Accordingly, the LOF phenotypes for each gene we examined formed a unique phenotypic signature, 
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where in some cases abnormalities were seen across the entire spectrum of assays, for example, coro1a 

and fam57ba, while for other genes, only a subset of phenotypes was observed.  

Overall, it is not clear whether the mammalian set of 16p11.2 genes is as active as the fish gene 

set; however, for 16p11.2 homolog activity that has been reported, mouse and fish LOF phenotypes are 

often similar. Mouse null knockouts have been reported for only eight 16p11.2 homologs (Coro1a, 

Doc2a, Kif22, Mapk3, Mvp, Ppp4c, Sez6l2, Tbx6,) (Chapman and Papaioannou, 1998; Foger et al., 2011; 

Miyazaki et al., 2006; Mossink et al., 2002; Ohsugi et al., 2008; Pages et al., 1999; Sakaguchi et al., 1999; 

Shui et al., 2007), with one conditional knock out (Prrt2) (Skarnes et al., 2011). All of the homozygous 

knockouts are associated with phenotypes, except for Mvp (Mossink et al., 2002) and Sez6l2, which has 

other copies that are predicted to compensate (Miyazaki et al., 2006). Both Ppp4c and Tbx6 homozygous 

knockout mice are embryonic lethal; Ppp4c heterozygotes showed growth retardation with decreased 

survival, while Tbx6 heterozygotes were viable and displayed no obvious phenotypes (Chapman and 

Papaioannou, 1998; Shui et al., 2007). In contrast, tbx24 mutant zebrafish are viable (Nikaido et al., 

2002), while our ppp4ca knockdown fish still had an abnormal phenotype at 5 dpf, implying they will not 

survive. Coro1a mutant mice have lower T cell counts due to defective migration (Foger et al., 2006) and 

increased apoptosis (Mueller et al., 2011), while Mapk3 mutant mice have reduced numbers of 

thymocytes (Pages et al., 1999). We did not evaluate zebrafish immune response, however, coro1a LOF 

zebrafish showed highly abnormal axon tracts, consistent with a migration defect. Doc2a knockout mice 

exhibit defects in excitatory synaptic transmission and long-term potentiation (Sakaguchi et al., 1999), 

while knockdown of doc2a in zebrafish resulted in defective brain morphology, but apparently normal 

motor responses and axon tracts. Because the mice were studied at later stages, similar phenotypes may 

develop in older fish. Mapk3 mutant mice, in combination with Mapk1 deficiency, exhibit defective 

neurogenesis (Satoh et al., 2011), and similarly, we observed defective axon tracts in mapk3 LOF 

zebrafish. Given the broad set of phenotypes we observed, it seems likely that the extensive postnatal 

lethality of 16p11.2-region deletion mice is a result of the compound hemizygosity of multiple genes.  
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Together, the data implicate activity of many 16p11.2 genes in development and/or function of the brain 

and body. 

The second major finding from this zebrafish study, definition of the first dosage sensor genes in 

the 16p11.2 CNV, is groundbreaking because dosage sensor genes have been identified in only a handful 

of CNVs where they are pivotal for association with mental health disorders. These include SHANK3 in 

22q13 (Durand et al., 2007), RPA1 in 17q13.3 (Outwin et al., 2011), VIPR2 in 7q36.3 (Vacic et al., 2011), 

and MBD5 in 2q23.1 (Talkowski et al., 2011). We identified two genes in the 16p11.2 CNV, aldoaa and 

kif22, where a phenotype is observed after reducing their expression level by ~50% in fish, thus showing 

characteristics of deletion dosage sensors.   

ALDOA is a glycolytic enzyme that catalyzes the conversion of fructose-1,6-bisphosphate to 

glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Several other functions and roles have 

been ascribed to ALDOA, including inhibiting phospholipase D2, binding to the cytoskeleton, and 

RNAase activity (Canete-Soler et al., 2005; Kim et al., 2002; Kusakabe et al., 1997). No homozygous null 

mutations have been identified in humans, indicating that ALDOA is essential (Esposito et al., 2004). Six 

cases of hemolytic anemia and myopathy have been associated with point mutations and reduced ALDOA 

activity (Beutler et al., 1973; Esposito et al., 2004; Kishi et al., 1987; Kreuder et al., 1996; Miwa et al., 

1981; Yao et al., 2004). One case presented with mental retardation (Beutler et al., 1973), another with 

microcephaly and language delay (Kreuder et al., 1996). Further connecting this gene with mental health 

disorders, expression of ALDOA is upregulated in the cortex of patients with schizophrenia and 

depression (Beasley et al., 2006). The mitochondrial citric acid cycle, into which glycolytic end products 

feed, has been shown to be dysregulated in children with autism (Giulivi et al., 2010), pointing to 

glycolysis and energy production as possible ALDOA targets. ALDOA was identified by a protein 

interactome study as a binding partner for the ASD-linked gene SHANK3 (Sakai et al., 2011) as well as 

in a study implicating postsynaptic signaling complexes in ASD (Kirov et al., 2012). The association of 
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partial LOF in ALDOA with patient phenotypes, as well as these other considerations, suggest that 

ALDOA is a player in 16p11.2 pathologies. 

KIF22 is a microtubule and DNA binding molecular motor, important for chromosome alignment 

(Santamaria et al., 2008) and compaction during anaphase (Ohsugi et al., 2008). Patients with a point 

mutation in the motor domain of KIF22 suffer from the autosomal-dominant skeletal disorder, 

spondyloepimethaphyseal dysplasia with joint laxity (Boyden et al., 2011; Min et al., 2011). No 

phenotype has been reported in Kif22+/- mice; however, ~50% of Kif22-/- mouse embryos do not survive 

past the morula stage (Ohsugi et al., 2008). KIF22 has not previously been implicated in brain function 

disorders, but our data suggests that this gene is required for formation of neural progenitors. Since 

mammalian heterozygotes in Kif22 have not been associated with phenotypes, Kif22 expression levels 

may be regulated after loss of one gene copy, or there may be greater redundancy amongst mammalian 

Kinesins than amongst zebrafish genes. For both kif22 and aldoaa, the stronger phenotypes seen after 

partial LOF in zebrafish relative to human suggest that an additional gene(s) must synergize with ALDOA 

or KIF22 to convey ASD, IDD or other phenotypic risk in humans.   

We suggested that the zebrafish could be a useful tool to address function of 16p11.2 homologs, 

without a need to assay for behaviors restricted to humans (Sive, 2011), specifically due to use of the 

same genetic pathways in mammals and fish. Consistently, almost all zebrafish LOF phenotypes could be 

prevented by expression of the homologous human gene, supporting gene orthology and shared gene 

function at the molecular or cellular level. With reference to our specific interest in ASD, we note that 

several zebrafish phenotypes may be similar to those seen in ASD (but also in IDD) patients, including 

abnormal brain size and shape, axon tracts and motor readouts, and specification of retinal and tectal 

neural progenitors (Almgren et al., 2008; Amaral et al., 2008; Courchesne et al., 2007; Hashimoto et al., 

1991; Marin-Padilla, 1975; Matson et al., 2011; Ritvo et al., 1986) as well as musculoskeletal defects seen 

in some ASD (but also in IDD) patients (Calhoun et al., 2011; Chen, 1982; Oslejskova et al., 2007; 

Shimojima et al., 2009).    
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This work identifies the 16p11.2 CNV as an active genomic region, and delineates two putative 

deletion dosage sensor genes in the region, with predictable connection to functional brain syndromes 

associated with the CNV. These genes, in combination with additional 16p11.2 or other genes, may be 

haploinsufficient for normal brain function. Other dosage sensors in this interval may exist, perhaps as 

pairs of synergistically functioning genes. Future assays in the zebrafish will augment antisense MO 

approaches with RNAi and genetic mutants, will determine whether duplication and deletion sensor genes 

are the same, and screen for synergistic deletion and duplication dosage sensor genes in the 16p11.2 gene 

set. These unbiased screening approaches are a powerful step in translational research focusing on CNVs 

associated with disorders arising from abnormal brain development and function.  
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METHODS 

Identification of zebrafish 16p11.2 homologs 

Zebrafish homologs of human16p11.2 genes were identified using UniGene, Ensembl, and UCSC 

Genome browsers with alignment and family tree comparisons. 

 

Fish lines and maintenance 

 Embryos were obtained from natural spawnings. Developmental stages are reported as hours post-

fertilization (hpf) at 28°C. The NeuroD:GFP line, was previously described (Obholzer et al., 2008; 

Ulitsky et al., 2011). Additional mutant lines were obtained from ZIRC. The tbx24 te314a/+ line (Nikaido et 

al., 2002; van Eeden et al., 1996) was incrossed, and homozygotes identified phenotypically at 24 hpf.  

The cdipt hi559Tg/+ incrossed line (Amsterdam et al., 2004) was genotyped using the following primers:  

hi559_F1: 5’-CTAGCTTGCCAAACCTACAGG-3’ 

hi559_F2: 5’-ACGCGCCACGCTCATCTACAGTC-3’ 

hi559_R1: 5’-TGGTTGTAACGTGTAATACTACGC-3’  

A 324 bp PCR product was observed in mutants using F1 and R1, but not wildtype embryos. Wildtype 

embryos show a 524 bp PCR product using F2 and R1 primers.  

 

cDNA constructs 

 Human or zebrafish cDNAs used for rescue experiments were cloned into pCS2+ (Table S4). 

Zebrafish cDNAs used for in situ hybridization are also included in Table S4. All human and some 

zebrafish clones were obtained from Open Biosystems. asphd1, c16orf53, doc2a, maz, sez6l2, taok2a, and 

taok2b were cloned by PCR from 24 hpf zebrafish cDNA, using primers listed in Table S2. We thank Dr. 

Jeremy Green (Kings College, London) for membrane-targeted CAAX-eGFP. 
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Antisense morpholino-modified oligonucleotide design and use 

Antisense morpholino-modified oligonucleotides (MOs) were designed by Gene Tools, LLC, to a 

splice donor or acceptor site, as close to the 5’ end of the predicted primary RNA as possible. Where a 

splice site MO gave no phenotype, a translational start site MO was designed. The designed MO 

sequences are shown in Table S2.  In all cases the top MO listed (in Tables 1 and S2) for a gene was used 

in phenotypic assays described elsewhere unless otherwise noted. For all experiments, a control MO was 

injected at the same or greater mass amount.  

One nL was injected into a single cell of a 1-2 cell embryo, using a range of concentrations to 

determine the lowest concentration at which a phenotype was observed. No more than 7.5 ng of a MO 

was injected. Unless otherwise stated, the “control” condition refers to control MO-injected embryos. 

The control MO sequence is 

5’-CCTCTTACCTCAGTTACAATTTATA-3’ 

 

Criteria and methodology to assess MO specificity 

Specificity of MO-induced LOF phenotypes was determined by the following criteria, as are the 

standard for the field (Bedell et al., 2011; Eisen and Smith, 2008). First, since initial MOs were designed 

to target splice junctions (described above), it is predicted that a change in RNA splicing would be 

observed by RT-PCR. These MOs would target zygotically expressed RNAs. Primers to detect 

knockdown are included in Table S2, and RT-PCR methods are discussed below. Where a change in 

splicing was not detected, an additional splice site MO was designed. For genes where splice site MOs 

changed splicing, but did not result in an observable phenotype, a translation blocking MO was designed 

to target maternal transcripts, as well as zygotic. It is further predicted that protein-coding capacity would 

be altered. This was determined by gel purification of the RT-PCR products after control or test gene MO 

injection, and sequencing the PCR product. Protein coding capacity was determined by using Sequencher 

and MacVector software. In the cases of putative deletion dosage sensor genes, change in expression 
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resulting from MO injection was monitored at the protein level by Western blot analysis (described 

below).   

Second, for phenotypes observed after injection of splice blocking MOs, it is predicted that normal 

RNA levels will decrease, and this was monitored by qPCR, as discussed in the specific Methods section. 

Correlation between phenotype and MO mass is also predicted, and was assayed in MO titration 

experiments (Fig. 6 and methods below).   

Third, MO specificity predicts that the LOF phenotype will be prevented (“rescued”) after co-

injection of the MO with cognate human or zebrafish mRNA that lacks the MO binding site, but preserves 

protein coding capacity. The appropriate mass of RNA used in rescue experiments was based on both 

rescue of the LOF phenotype as well as the lack of an overexpression phenotype when the same RNA 

mass was co-injected with the control MO. Mass of RNA injected in rescue assays, and the success of 

rescue is listed in Table 3. GenBank Accession numbers and cDNA constructs used to synthesize RNA 

are shown in Table S4. RNA synthesis is discussed below. The rescue titration experiments had a 

minimum of 4 conditions; control MO plus mGFP to serve as a balancer RNA, LOF MO plus mGFP 

RNA, control MO plus the human/fish RNA, and LOF MO plus the fish RNA.  

Fourth, where necrosis, or a severe phenotype was observed, the p53 MO was co-injected, to 

suppress off-target cell death (Robu et al., 2007), at 1.5-fold greater mass amount than the mass of 

experimental or control MO, as indicated in Table 2. The p53 MO sequence is:  

5’-GCGCCATTGCTTTGCAAGAATTG-3’.  

Finally, where the mutant lines were available, for cdipt and tbx24, the MO-induced LOF 

phenotypes were compared, or in the cases of aldoaa and kif22, the effects of shRNAs were examined. 

 

Phenotypic scoring procedures 

Embryos were scored live using brightfield imaging, or after fixation for axon tracts using  
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scanning confocal imaging. Where there was any ambiguity, or a question of whether phenotypic rescue 

had been achieved, another lab member scored the embryos. For most genes, more than one of the authors 

independently assayed MO effects or ability to be rescued by RNA injection. Results were almost always 

concordant. We required ~70% of embryos in a condition to have an aberrant phenotype in at least 2 

independent experiments, and for the phenotype to be rescued by RNA co-injection.  

 

Morphological assays 

 LOF embryos were examined by brightfield and fluorescence microscopy, at 24 hpf, for brain 

morphology, after injection of the brain ventricles with Texas Red dextran (Gutzman and Sive, 2009). 

Embryos were scored for presence of forebrain, midbrain and hindbrain hingepoints, brain ventricle size 

and volume, forebrain truncation and eye morphology. Trunk and tail morphology, and the shape of 

muscle segments were scored by brightfield microscopy or by staining actin filaments with phalloidin 

(described below). Phenotypes existing in greater or equal to 70% of embryos and also meeting 

specificity criteria were included in results unless otherwise stated. 

 

Movement assays 

Movement in LOF embryos was monitored at 24 hpf and 48 hpf. In 24 hpf embryos spontaneous 

contractions were observed. Spontaneous contractions are previously described (Saint-Amant and 

Drapeau, 1998). At 24 hpf the typical movement consists of side-to-side contractions that result in slow 

coils. Embryos were observed for several minutes, as by 24 hpf the contractions are sporadic.  Touch 

response assays were administered at 48 hpf. For this, a loop of thread was used to gently touch the 

embryos on both the head and the tail. The normal response of a tail stimulus involves the embryo briefly 

swimming (about the length of its body) and landing again on the bottom of the dish, whereas a stimulus 

to the head begins with full coiling of the embryo resulting in repositioning (C-start) (Issa et al., 2011; 

Saint-Amant and Drapeau, 1998).  
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Microscopy  

Methods for brightfield microscopy have been described previously (Gutzman and Sive, 2010). 

Confocal imaging was performed on a Zeiss LSM710, after fixation in 2% TCA (acetylated α-tubulin) or 

4% PFA (phalloidin). 

 

In situ hybridization 

In situ hybridization methods are described elsewhere (Wiellette and Sive, 2003). Probes used are 

described in Table S4 and wildtype 24 hpf embryos that were fixed in 4% PFA were used to assay spatial 

expression.  

 

Immunohistochemistry   

Whole-mount immunostaining used mouse anti-acetylated α-tubulin (Sigma, 1:1000). Goat anti-

mouse Alexa Fluor 488 (Molecular Probes, 1:500) was used as a secondary antibody. Staining by 

phalloidin Texas Red was performed using a previously described method (De Rienzo et al., 2011). 

 

RT-PCR and qPCR  

RT-PCR was performed to monitor expression at developmental time points (Fig. S1) and changes 

in splicing that resulted from MO targeting (Table 2). Total embryo RNA was extracted using Trizol 

(Invitrogen) followed by chloroform extraction and isopropanol precipitation and DNAase treatment or 

RNeasy kit (Qiagen). cDNA synthesis was performed with Super Script III Reverse Transcriptase 

(Invitrogen) and oligodT or random hexamers. Primers for RT-PCR and qPCR are shown in Table S2. 

For detecting changes in splicing, primers were designed around targeted exons.  



D
ise

as
e 

M
od

el
s &

 M
ec

ha
ni

sm
s  

    
   D

M
M

Ac
ce

pt
ed

 m
an

us
cr

ip
t

 24 

RT-PCR was performed using Hot Start Taq Plus (Qiagen) and primers in Table S2. Primers were 

designed to only recognize normal transcript (see Fig. 5 for primer design strategy). Knockdown was 

confirmed by sequencing PCR products and MO effects on expression of predicted protein are included in 

Table 2. qPCR was performed using a ABI Prism 7900 (ABI). Fluorescence detection chemistry utilized 

SYBR green dye master mix (Roche). The relative amount of product was calculated using ΔCT and 

normalized to Ef1α. Values are reported with standard deviation.  

Each assay was performed in at least two independent experiments. Each experiment contained at 

least 90 embryos per condition divided into three separate RNA preparations (biological replicates). Each 

RNA preparation was used for one reverse transcription reaction, which was then used in triplicate for 

each qPCR reaction (technical replicates). 

 

RNA injections 

 RNA was synthesized using the Message Machine kit (Ambien), and injected as described 

previously (Gutzman et al., 2008). 

 

Western blot analysis 

Methods for Western blot analysis have been described previously (Gutzman and Sive, 2010). 

Human anti-KIF22 antibody (Sigma K1390) used at 1:1000 in 3% BSA and human anti-ALDOA 

antibody (Sigma WH0000226M1) used at 1:1000 in 5% milk were detected with anti-mouse HRP 

secondary antibody (Sigma). Human anti-GAPDH antibody (Abcam ab22555) used at 1: 3000 in 5% milk 

TBS-T and human anti-eIF4E antibody (Cell Signaling 9742S) used at 1:500 in 5% BSA TBS-T were 

detected using anti-rabbit HRP secondary antibody (Cell Signaling). Since the Aldoa antibody is not 

specific for the protein product of aldoaa and is expected to cross-react with aldoab, the Aldoa Western 

blot was performed using heads only, as the aldoab gene is only expressed in the tail (not shown). 
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RNAi methods 

Hairpins for aldoaa and kif22 were designed using Invitrogen Block-IT RNAi Designer software. 

A total of four hairpins per gene was designed and analyzed. Hairpin oligonucleotide pairs were purified 

by SDS-PAGE, annealed by heating to 95oC and slow cooling to 10oC. Annealed oligonucelotides were 

subcloned into the miR30 backbone (Dong et al., 2009), of the I-SceI-miR124:GFP-miR30-pA plasmid, 

prepared by Dr. Jennifer Gutzman. This plasmid consists of the CNS-specific promoter miR124 

(Shkumatava et al., 2009) driving a GFP reporter upstream of the miR30 backbone and an SV40 polyA 

addition site, with the expression cassette flanked by I-SceI restriction sites. Transgenesis was effected by 

the meganuclease (I-SceI) method (Thermes et al., 2002), using fresh I-SceI for each transgenic 

preparation.  

aldoaa hairpin 1318 (binding a site in the 3’ UTR):  

sense strand, 5’-

GGCTAGCAGTTACTTCCTTATGTGTGAAACACTGGTGCACATGATGGAGTGTTTCACACATGGAAGTAAC

C- 3’;  

antisense strand, 5’-

TCGTCAATGAAGGAATACACACTTTGTGACCACGTGTACTACCTCACAAAGTGTGTACCTTCATTGGTCG

G- 3’;  

kif22 hairpin 1616 (binding a site in the 9th exon):  

sense strand, 5’-

GGCTAGCAGGCCGTTGTTTTACTCCATTACACTGGTGCACATGATGGAGTGTAATGGAGTAACAACGGCC

C-3';  

antisense strand, 5’-

GGCTGGGCCGTTGTTACTCCATTACACTCCATCATGTGCACCAGTGTAATGGAGTAAAACAACGGCCTGC

T- 3’ 



D
ise

as
e 

M
od

el
s &

 M
ec

ha
ni

sm
s  

    
   D

M
M

Ac
ce

pt
ed

 m
an

us
cr

ip
t

 26 

 
Acknowledgements 

Thanks to Olivier Paugois for expert fish husbandry. We are grateful to Sive lab members for support, and 

comments on the manuscript, especially Isabel Brachmann and Laura Jacox. Special thanks to Michael 

Lee for comments, Jennifer Gutzman for the I-SceI-miR124:GFP-miR30-pA plasmid, and Jacob Austin-

Breneman for shRNA design. Thanks to George Bell and Prathapan Thiru of BARC for identification of 

homologs, Jeong-Ah Kwon in the Genome Technology Core for help with qPCR and Nicki Watson in the 

Keck Imaging Facility. Thanks to Mark Daly and Stephen Haggarty for useful discussions, and to Ed 

Skolnick for encouragement. Thanks to colleagues in the Simons Center for the Social Brain at MIT, 

SFARI investigators and members of the Boston Autism Consortium, for discussion. This work was 

supported by the Simons Foundation Autism Research Initiative, grant 95091. 

 

Financial or competing interests disclosure 

The authors declare that they have no financial or competing interests. 

 

Author contributions 

1. Alicia Blaker-Lee isolated and characterized expression and function of zebrafish 16p11.2 homologs, 

analyzed the kif22 gene as a putative dosage sensor, prepared figures and made a major contribution to 

writing the manuscript. 

2. Sunny Gupta isolated and characterized expression and function of zebrafish 16p11.2 homologs, 

standardized the qPCR assay, analyzed the aldoaa gene as a putative dosage sensor, prepared figures and 

contributed to the manuscript.  

3. Jasmine McCammon characterized zebrafish 16p11.2 homolog function, including analysis of axon 

tracts and protein expression and made a major contribution to writing the manuscript. 

4. Gianluca De Rienzo performed shRNA analysis of aldoaa and kif22 genes, prepared a figure and 

contributed to the manuscript. 



D
ise

as
e 

M
od

el
s &

 M
ec

ha
ni

sm
s  

    
   D

M
M

Ac
ce

pt
ed

 m
an

us
cr

ip
t

 27 

5. Hazel Sive initiated and directed the study, and made a major contribution to writing the manuscript. 

 

Funding 

This work was supported by the Simons Foundation Autism Research Initiative, through grant 95091. 

 

TRANSLATIONAL IMPACT 

Clinical issue 

Copy number variants (CNVs) are segments of DNA ranging from 1,000 bp to several megabases, where 

one genomic copy is either duplicated or deleted, changing the number of gene copies in that interval. 

Because CNVs have been associated with many disorders, from cancer to autoimmune disease to 

neuropsychiatric disorders, understanding the mechanisms by which CNVs can be deleterious is very 

important. Carriers of 16p11.2 CNVs present with a wide range of anomalies, including intellectual 

disability disorder (IDD) and autism spectrum disorders (ASD). Therefore, the genes in this CNV are 

likely integral to normal brain function. With 25 genes identified in the central core interval, it is 

hypothesized that dosage changes in one of more of these genes links the CNV to associated pathologies. 

However, the critical genes in 16p11.2 and the majority of other CNVs are unknown.   

 

Results 

This study utilized the zebrafish as a tool to study activity of genes homologous to those in the human 

16p11.2 interval, and identify which genes from this CNV may be most important for association with 

brain disorders. While zebrafish do not possess the behavioral repertoire necessary to recapitulate human 

behaviors, their gene function is conserved with mammals and they are an ideal system for rapid genetic 

manipulations. These attributes make zebrafish an appropriate system with which to study the large 

number of genes in the 16p11.2 CNV. Of twenty-two homologs identified in zebrafish, twenty-one 

displayed embryonic and larval loss of function phenotypes, demonstrating that this set of genes is very 
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important during development. Twenty genes are necessary for proper brain size and shape, with subsets 

also affecting eye development, axon tract organization, movement behaviors, and muscle formation. 

Because changes in dosage for critical genes in the 16p11.2 are anticipated to be detrimental and lead to 

onset of associated disorders, the authors examined whether these phenotypes persisted when the gene 

produced only 50% of its product, equivalent to losing one copy of a gene. The majority of genes 

analyzed did not have a phenotype at 50% reduction; however, two genes were sensitive to dosage. These 

encode the glycolytic enzyme Aldolase A (Aldoa), and the microtubule motor Kinesin family member 22 

(Kif22). These results suggest that the function of genes encoding Aldoa and Kif22 change with copy 

number, and could link the 16p11.2 CNV to pathologies. 

 

Implications and future directions 

These data show that the 16p11.2 CNV comprises a highly active set of genes, particularly for formation 

of the nervous system, but likely also for nervous system function. Most importantly, two genes were 

identified as having functions that were sensitive to dosage, suggesting that these may be critical in 

connecting the CNV to IDD, ASD and other disorders. Future directions include experiments to 

understand the molecular pathways by which each works, and whether each gene works together with 

others in the 16p11.2 region, which human genetic data would predict. Such data will help define targeted 

assays in mammals, and possible therapeutic directions. This study further shows that zebrafish can be 

used to identify genes that are dosage sensitive from other CNVs implicated in other disorders.   
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FIGURE LEGENDS 

Figure 1. Strategy and isolation of zebrafish (Danio rerio) 16p11.2 homologs. (A) Strategy to use 

zebrafish as a tool to analyze 16p11.2 gene activity. (B) Homologous human and zebrafish genes. Each 

homologous pair is connected by a red line. Genes are shown in relative chromosomal positions (Table 

S1). The mapk3, gdpd3, and ypel3 loci are syntenic, whereas kctd13, sez6l2, and asphd1 genes are 

grouped, but order on the human chromosome is different. The cluster tbx24, ppp4cb, and aldoab genes 

have conserved order, but the region includes intervening genes. Single fish icon, single homolog; two 

fish icons, multiple homologs; blue dot, teleost homolog, but no Danio rerio homolog; red box, no teleost 

homologs identified; black bar, synteny; H. s., Homo sapiens; D. r., Danio rerio; Chr., chromosome. 

 

Figure 2. Loss of function (LOF) embryos have abnormal brain and tail morphology. (A) Embryonic 

phenotypes were observed at 24 hpf, after LOF effected by injection of antisense morpholino 

oligonucleotides (MO) (Table S2) at the one to two cell stage (Table S3). Genes assayed (Table S1) are 

indicated above each set of images. “Control” embryos were injected with control MO (Methods). Brain 

ventricles are injected with Texas Red dextran, and brightfield and fluorescence images superimposed. 

Images are representative of phenotypes observed in at least 70% of embryos, over 2-7 independent 

experiments, with 50-350 embryos total assayed per gene (Table S3). (a-w): dorsal views; (a’-w’) lateral 

close-up; (a”-w”) full embryo lateral view. (a-a”) schematics of embryo landmarks. F, forebrain ventricle; 

M, midbrain ventricle; H, hindbrain ventricle.  (b-w) and (b’-w’) anterior to the left, and images are 

shown at equivalent magnification. (B) Phenotypic group where LOF embryos have narrow midbrain and 

hindbrain ventricles. Gene assayed is indicated above each panel. Dorsal views, anterior to the left. F, 

forebrain ventricle; M, midbrain ventricle; H, hindbrain ventricle; MHB, midbrain-hindbrain boundary. 

(C) Phenotypic group where LOF embryos have a straight midbrain. Gene assayed is indicated above 

each panel. Dorsal views, anterior to the left. FB, forebrain; MHB, midbrain-hindbrain boundary; asterisk, 
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midbrain hingepoint; scale bar = 150 µm. Embryo images in (B) and (C) are the dorsal view panels of 

(A).   

 

Figure 3. Phenotypes obtained after LOF of zebrafish 16p11.2 homologs. Embryonic phenotypes 

observed after LOF (Fig. 2) are cataloged and structures or assays are indicated at the top of each column. 

All assays were done in comparison to embryos injected with control MO. Quantification of phenotypes 

is given in Table S3 and rescue conditions are shown in Fig. 4 and Table 3. 

a Genes assayed are indicated in the left column and gene identifiers are included in Table S1. MOs 

targeting these genes are included in Table S2.  

b Morphological analyses addressed head morphology (brain ventricle shape and eye formation), tail 

shape and length, and muscle segment shape (chevron vs. U-shape).  

c Two types of movement were tested: spontaneous movement at 24 hpf, and touch response at 48 hpf. 

The ino80e LOF embryos respond with one flip of the tail or not at all. mapk3 LOF embryos have a jerky 

response and the ypel3 LOF embryos move in small, jerky circles. mvp LOF embryos range from not 

responding to spinning in response to touch. Otherwise, touch response was weak, sluggish, or absent.   

d Initial axon tracts form by 36 hpf and were assayed by immunostaining for acetylated tubulin. Axon 

tracts were not assayed in mvp LOF due to lack of rescue, in prrt2 LOF due to lack of observable 

phenotype at these time points, and in tbx24 LOF due to lack of head expression. 

e Pigmentation was observed at 48 hpf in LOF embryos and images are included in Fig. S3. 

f Persistence of early phenotypic abnormalities was monitored up to 5 dpf. 

1 The mvp MO used for the phenotype reported is indicated with matching superscript and listed first in 

Tables 1 and S2. 

Red boxes: abnormal phenotype in >70% embryos; speckled red boxes: abnormal phenotype in >70% of 

embryos, but the phenotype was mild. ND, not determined.  
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Figure 4. Human orthologs rescue zebrafish LOF embryos. Single cell embryos were injected with 

MO, either alone or together with human or fish mRNA, and imaged at 24 hpf after injecting Texas Red 

dextran into the brain ventricles. The human homolog co-injection with a zebrafish LOF whose phenotype 

is thusly significantly restored to normal, indicates functional equivalence with the zebrafish gene 

(orthology). kctd13 ((L0-L”’) and maz LOF (O0-O”’) were rescued by zebrafish but not human RNA. (B0-

T0) dorsal views and (B”-T”) lateral views of LOF embryos. (B’-T’) dorsal views and (B”’-T”’) lateral 

views of LOF embryos plus rescue mRNA. Human RNAs co-injected for rescue are indicated by upper 

case letters, except for z.kctd13 and z.maz, which refer to RNA from the zebrafish genes.  The rescue 

experiments shown in D, E, and G are from the experiment shown in Fig. 2, in other cases, the images are 

taken from different experiments, with data consistent to that shown in Fig. 2. Images are representative 

of 2-4 independent experiments per gene, with 40-194 embryos total assayed per gene. Rescue of the 

abnormal LOF phenotypes was achieved in ~50% or more of the embryos. Representative images are 

shown here and quantification is included in Table 3. 

 

Figure 5. Axon tracts are abnormal in LOF embryos.  Forebrain and hindbrain axon tracts after LOF. 

Axons were labeled with acetylated α-tubulin antibody, and imaged by scanning confocal microscopy of 

fixed, flatmounted 36 hpf LOF embryos.  (A-M) lateral view, showing forebrain axons. (A’-M’) dorsal 

view, showing hindbrain axons. Genes targeted for LOF by MO injection are indicated above each set of 

panels in lowercase. Over two independent experiments, an average of 8 embryos per gene was imaged 

for effects of LOF and rescue. The percentage of affected embryos was 80% or greater. Hindbrain and 

forebrain tracts were affected in all LOF conditions, except kctd13, which only showed defects in the 

hindbrain and kif22, which only showed defects in the forebrain. The rescues with cognate RNA led to 

rescue in 75-100% of embryos assayed. Human RNAs co-injected for rescue are indicated by upper case 

letters, except for z.kctd13, which refers to RNA from the zebrafish gene. “Control” embryos were 

injected with control MO (Methods). ac, anterior commissures; sot, supra optic tract; poc, post optic 
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commissure; tpoc, tract of the post optic commissure; tpc, tract of the posterior commissure; r2, r4, r6, 

rhombomeres 2, 4, and 6; asterisk, reduced or disorganized ac; arrowhead, reduced or disorganized sot; 

arrow, reduced tpc; open arrowhead, reduced or disorganized tpoc; dotted arrow, reduced poc.   

 

Figure 6. Identification of deletion dosage sensor genes. (A) Strategy for identification of deletion 

dosage sensor genes. MOs designed against splice sites are titrated to find the lowest amount resulting in 

a phenotype, with at least 70% penetrance, and normal RNA remaining at this MO concentration is 

determined. A “deletion dosage sensor” is defined as a gene where a phenotype is observed when ~50% 

of the normal mRNA remains.  (B) Strategy to quantify normal mRNA remaining in LOF embryos. An 

antisense MO is designed to an intron/exon boundary, and typically results in exon exclusion or intron 

inclusion (Table 2). qPCR primers are designed to detect the normally processed mRNA, where one 

primer in each set hybridizes to the normal but not the abnormally processed transcript. For, forward 

primer; Rev, reverse primer; Ex, exon; Intr, Intron. (C) Percentage of normal mRNA remaining in 24 hpf 

LOF embryos. RNA levels were quantified by qPCR, normalized to ef1α and expressed relative to levels 

of experimental RNA in control MO-injected embryos. LOF was performed at two MO concentrations, 

one that did not give a phenotype (“Low MO”) and one that did (“High MO”). Genes assayed are 

indicated below relevant histograms. (D) Quantification of normal aldoaa and kif22 mRNA after LOF in 

18, 24 and 36 hpf embryos, at the same MO concentration used in (C). qPCR was performed and RNA 

levels normalized to ef1a  and expressed relative to levels of experimental RNA in control MO-injected 

embryos.  (E) Western blots of 24 hpf LOF embryos, same MO concentration used in (C), representative 

image of 3 experiments. Protein was extracted from embryos injected with aldoaa or kif22 MOs. After 

LOF, 56% of Aldoa (from head-dissected protein, thus Aldoaa-enriched, see Methods) and 65% of Kif22 

(whole embryo) protein remains when normalized to control proteins (Eif4e and Gapdh, respectively) 

compared to control MO-injected embryos. (F) Muscle segments in 24 hpf LOF embryos. Actin is stained 

with phalloidin, and muscle shape is indicated by white dotted lines. Over two experiments, chevron 
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shape was abnormal in 0% of control MO-injected embryos, 100% aldoaa LOF embryos, and 100% kif22 

LOF embryos (n=10 for each condition). (G) GFP expression in the NeuroD:GFP line. 0% (n=106) 

control embryos (injected with control MO); 94% (n=97) aldoaa LOF embryos; 100% (n=100) kif22 LOF 

embryos affected as observed over four independent experiments. Dotted arrow, retina; arrow, tectum; 

oval, pancreas. (a-a’, c-c’, e-e’) lateral view, anterior to the left, (b-b’, d-d’, f-f’) ventral view. 

 

Figure 7. aldoaa and kif22 function are required in the brain. (A) shRNA expression strategy. 

shRNAs were expressed from a miR30 backbone, under the CNS-specific miR124 promoter. Transient 

transgenesis was induced using I-SceI meganuclease. (B) Relative expression of aldoaa mRNA after 

inhibition by shRNA. Expression was quantified by qPCR in 24 hpf embryos injected with an aldoaa 

hairpin (aldoah) shown relative to embryos injected with a control hairpin (YFPh).  Data was normalized 

to either (a) actin or (b) GFP expression. (c) Touch response in 24 hpf aldoah embryos versus control  

YFPh embryos (81% abnormal, n=26). (C) Phenotype of shRNA-injected embryos. (a-a”) 24 hpf control 

YFPh embryos (16% abnormal, n=51, in 2 independent experiments). (b-b”) 24 hpf aldoah embryos (89% 

abnormal, n=53, in 2 independent experiments). (a, b), lateral view of the head; (a’, b’), dorsal view of the 

head after brain ventricle injection; (a”, b”), lateral view of whole embryo.  (D) Relative expression of 

kif22 mRNA after inhibition by shRNA. kif22 mRNA relative expression was quantified by qPCR in 24 

hpf embryos injected with a kif22 hairpin (kif22h) relative to those injected with the YFPh control hairpin. 

Data was normalized to (a) actin or (b) GFP expression. (E) Phenotype of shRNA-injected embryos. (a-

a”) 24 hpf YFPh embryos (8% abnormal, n=27, in 2 independent experiments). (b-b”) 24 hpf kif22h 

embryos (81% abnormal, n=26, in 2 independent experiments). (a, b), lateral view of the head; (a’, b’), 

dorsal view of the head after brain ventricle injection; (a”, b”), lateral view of whole embryo. 
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Gene Namea

Translation 
Start Site 

MOb

Splice Site 

MOc

Change in 
RNA 

Splicingd

Resultant Change 
in Predicted 

Proteine

Phenotype 

Observedf

Phenotype 
Correlates with RNA 

Decreaseg

Rescue by RNA 

Injectionh

Additional 
Knockdown 

Methodi

aldoaa yes yes truncation yes yes, also proteinj yes shRNAk

asphd1 yes yes truncation yes yes yes

c16orf53 yes yes truncation yes yes yes

cdipt yes yes truncation yes yes yes mutantl

coro1a yes yes truncation yes yes yes

yes yes
in frame exon 

deletion
yes ND ND

doc2a yes yes truncation yes yes yes

fam57ba yes yes truncation yes yes yes

gdpd3 yes NA yes yes

hirip3 yes NA yes yes

yes yes truncation no ND NA

ino80e yes NA yes yes

yes yes truncation no ND no

kctd13 yes yes truncation yes yes yes

kif22 yes yes truncation yes yes, also proteinj yes shRNAk

mapk3 yes NA yes yes

yes yes truncation no ND NA

maz yes yes truncation yes yes yes

mvp yes1 yes truncation yes ND no

yes2 NA yes no

yes3 NDm NA yes ND no

ppp4ca yes yes truncation yes yes yes

yes yes
in frame exon 

deletion
no NA NA

prrt2 yes NA no NA

yes yes truncation no NA NA

sez6l2 yes NA yes yes

yes yes truncation no NA NA

taok2a yes yes truncation yes yes yes

taok2b yes yes truncation yes yes yes

tbx24 yes NA yes publishedn mutantl

ypel3 yes yes truncation yes yes yes

Table 1. Summary of tests for antisense morpholino oligonucleotide specificity.  
a  For gene assignments, see Fig. 1 and Table S1.  
b,c MOs were designed as indicated in Methods. See Table S2 for MO sequences.  
d For MOs targeting a splice site, RT-PCR (detailed in Methods) was used to determine whether a change in 
splicing occurred. Primers are included in Table S2. 
e Changes in predicted protein resulting from the RT-PCR-detected change in RNA splicing. Changes are 
described in Table 2.  
f Phenotypes were scored as indicated in Methods (See Fig. 2, 3, and Table S3). 
g MOs were administered in titrations. For splice site MOs where the mass correlated with an increase in 
phenotype severity, qPCR was performed to measure the normal RNA (Fig. 6).  
h RNA was co-injected with MOs to confirm phenotypes were specific effects of the MO (Fig. 3, Table 3).  
i Similar phenotypes were observed for additional knockdown methods (Fig. 7, S2).  
j A decrease in protein was also observed by Western blot analysis of 24 hpf embryos (Fig. 6 and Methods).  
k shRNA was used to target deletion dosage sensors. Similar phenotypes were observed (Fig. 7). 
l Mutant lines were available for cdipt and tbx24 and similar phenotypes were observed (Fig. S2 and Methods). 
m No splicing change was observed in RNA. 
n The rescue for the tbx24 MO was previously published in Nikaido et al., 2002. 
1, 2, 3 mvp MOs 1, 2, and 3, correspond to those included in Tables 2, S2, and S3, although no mvp LOF 
conditions were rescued.  
ND, not determined; NA, not applicable.  

	
  
Table 1 
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Gene Namea
MO Massb 

(ng/embryo) Results of MO Action on RNA Coding Capacityc

Predicted Proteind 

(Truncated/Normal)      
(Amino Acids)

p53 MO 

Includede

aldoaa 1 exon deletion causing frame shift and early stop codon 202/364 no
asphd1 3.5 intron inclusion containing stop codon 144/354 yes
c16orf53 7.5 intron inclusion containing stop codon 52/273 no
cdipt 7.5 intron inclusion causing frame shift and early stop codon 144/214 no
coro1a 5 intron inclusion causing frame shift and early stop codon 61/455 yes
doc2a 7.5 intron inclusion causing frame shift and early stop codon 184/401 no
fam57ba 1.2 exon deletion causing frame shift and early stop codon 33/202 no
gdpd3 7 translation blocking 0/315 yes
hirip3 6.5 translation blocking 0/510 yes
ino80e 5 translation blocking 0/231 yes
kctd13 7.5 intron inclusion causing frame shift and early stop codon 114/330 no
kif22 5 exon deletion causing frame shift and early stop codon 123/634 yes
mapk3 5 translation blocking 0/392 yes
maz 1.5 intron inclusion causing frame shift and early stop codon 97/493 no
mvp1 5 intron inclusion causing frame shift and early stop codon 45/863 yes
mvp2 6 translation blocking 0/863 yes
mvp3 5 ND ND yes
ppp4ca 3.5 intron inclusion causing frame shift and early stop codon 37/311 yes
prrt2 10 intron inclusion causing frame shift and early stop codon 79/226 no
sez6l2 5 translation blocking 0/892 yes
taok2a 5 intron inclusion causing frame shift and early stop codon 65/1138 no
taok2b 5 intron inclusion containing stop codon 188/1182 no
tbx24 4 translation blocking 0/874 yes
ypel3 2 exon deletion causing frame shift and early stop codon 60/119 yes

Table 2. MO Amounts and Effects on Gene Expression.   
a Genes indicated in Table S1 were targeted in LOF experiments and quantification is included 
in Tables 3 and S3.  
b The MOs (Table S2) were injected at the 1-2 cell stage in titration experiments. The mass of 
MO that was used for phenotype characterization, scoring (Figs. 2, 3 and Table S3) and rescue 
experiments (Figs. 4, 5 and Table 3) is indicated. 
c Splicing changes were monitored by RT-PCR (Methods) using primers indicated in Table S2 
and detected changes were sequenced to identify changes in mRNA, including frame shifts. 
d The predicted changes in protein, based on the sequencing data obtained, are included as the 
number of amino acids in truncated vs. normal protein. Truncated proteins listed may contain 
abnormal amino acids, as amino acids encoded by an intron inclusion or a frame shift are 
predicted (in some cases) before an early stop codon. 
e The p53 MO was used to eliminate off-target effects where indicated.  
1, 2, 3 The mvp MOs are included in the same order as Tables 1, S2, and S3.  
1 Indicates the mvp MO that was used for the LOF collation in Figs. 2A and 3.  
ND, not determined.  
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Gene Namea

Rescue mRNA 

Massb 

(pg/embryo)

Total 

Embryosc

Rescued 

Embryosd

% 

Rescuede

Number of 
Independent 

Experimentsf

aldoaa 200 52 37 71 3
asphd1 100 110 58 53 2
c16orf53 80 48 29 60 2
cdipt 50 107 93 87 3
coro1a 10 74 46 62 2
doc2a 100 90 84 93 2
fam57ba 320 82 69 84 3
gdpd3 20 70 34 49 2
hirip3 100 95 81 85 2
ino80e 200 56 45 80 2
kctd13g 200 80 62 78 2
kif22 15 194 140 72 4
mapk3 5 96 85 89 4
mazg 50 102 80 78 2
ppp4ca 30 116 116 100 3
sez6l2 100 43 24 56 2
taok2a 200 85 49 58 2
taok2b 200 77 51 66 2
ypel3 75 40 33 83 2

Table 3. Rescue Assays with Human or Fish Genes after MO LOF. Representative images of 
embryos from rescue experiments are shown in Fig. 4.  
a Genes indicated in Table S1 were targeted in LOF experiments by MOs included in Table S2, 
using MO masses described in Table 2.  
b Mass of mRNA for rescue was determined based on a titration used for single cell embryo 
injections. In control and LOF conditions a balancing amount of membrane targeted GFP mRNA 
was co-injected to achieve the equivalent load in the rescue condition (Methods). Where more 
than one MO was tested per gene, the rescue of LOF experiment was performed using the first 
MO listed for a gene in Table S2. cDNA constructs included in Table S4 and RNA preparation 
described in Methods.  
c Total embryos scored over 2-4 experiments.  
d Number of embryos whose phenotype was significantly restored to normal.  
e Percentage of rescued embryos relative to total embryos injected.  
f 2-4 independent experiments were performed per rescue condition after the preferred titrated 
dosage was determined. 
g 2-4 kctd13 and maz LOF phenotypes were rescued using zebrafish mRNA using the indicated 
masses. All other rescue mRNA masses refer to human mRNA. 
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Figure S1	
  
	
  

	
  

Figure S1. 16p11.2 homologs are expressed during development and in the brain. (A) 
RNA expression analysis by RT-PCR. Total embryo RNA was analyzed for expression of 
16p11.2 homologs at 2.5 hpf (blastula), 6 hpf (early gastrula), 11 hpf (late gastrula), 18 hpf 
(mid-somitogenesis), 24 hpf and 48 hpf. Most genes are expressed maternally, at 2.5 hpf, and 
expression persists zygotically (6 hpf and later). asphd1, doc2a, prrt2 and sez6L2 show 
zygotic expression only, suggesting that these genes act later in development. tbx24 
expression declines sharply by 48 hpf, suggesting a narrow temporal activity window.  
Further, this gene is not expressed in brain. (B) Spatial expression analysis by whole mount in 
situ hybridization. Gene expression was analyzed at 24 hpf (see Methods and Table S4). (a-t) 
dorsal view, (a’-t’) lateral view. All genes except tbx24 were expressed in the brain.	
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Figure S2 
	
  

	
  
Figure S2. Similar phenotypes after LOF by MO injection and in genetic mutants. (A, A’) 
cdipt hi559Tg/hi559Tg were scored by genotyping (see Methods for details). (B, B’) cdipt antisense 
morpholino LOF embryo. In both cases, embryos have a narrow forebrain and midbrain 
ventricle. (C-C’) tbx24 te314/te314 were scored by morphology. (D-D’) tbx24 antisense morpholino 
LOF embryo. In both cases, fused muscle segment borders and shorter tails are apparent. (A-D) 
dorsal view, (A’-D’) lateral view.  
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Figure S3 
 

 
 
Figure S3. Pigmentation is abnormal in LOF embryos. Pigment cells were observed after 
LOF, at 48 hpf, by brightfield imaging. Rostral and midline cells were specifically scored as a 
measure of normal melanocyte migration. (A-I) dorsal views. Genes targeted for LOF by MO 
injection are indicated above each set of panels. Red arrowhead, no rostral pigment cells; red 
arrow, no midline pigment cells; scale bar, 150 µM. Average of 35 embryos assayed per gene, 
over 2-4 independent experiments, 70-100% affected compared to control MO-injected embryos.  
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Zebrafish Gene Percent Identity with Homolog ind: 

D.rerio Gene Namea Ensembl Identifierb Chromosomal Locationc Human Fugu Medaka Mouse

aldoaa ENSDARG00000011665 Chr. 3: 39.56 84 92 93 85

aldoab ENSDARG00000034470 Chr. 12: 4.75Rev 84 ND ND 82

asphd1 ENSDARG00000075813 Chr. 3: 14.87 52 ND 72 50

c16orf53 ENSDARG00000076966 Chr. 12: 4.31 50 54 60 48

cdipt ENSDARG00000070686 Chr. 3: 21.35 69 70 76 60

coro1a ENSDARG00000054610 Chr. 3: 31.09Rev 69 85 84 69

doc2a ENSDARG00000078736 Chr. 3: 15.15 63 81 48 63

fam57ba ENSDARG00000026875 Chr. 3: 21.15 58 ND 73 58

fam57bb ENSDARG00000074564 Chr. 12: 4.34Rev 60 ND 74 55

gdpd3 ENSDARG00000074466 Chr. 3: 23.47Rev 46 67 66 44

gdpd3 (incomplete)e ENSDARG00000006944 Chr. 12: 4.58Rev 48 61 60 47

hirip3 ENSDARG00000027749 Chr. 3: 14.81Rev 32 ND 37 30

ino80e ENSDARG00000022939 Chr. 16: 12.02 48 70 74 49

kctd13 ENSDARG00000044769 Chr. 3: 14.83Rev 62 80 80 62

kif22 ENSDARG00000077375 Chr. 12: 5.80Rev 52 70 69 51

mapk3 ENSDARG00000070573 Chr. 3: 26.81 81 83 83 81

maz ENSDARG00000087330 Chr. 3: 21.33Rev 45 ND 44 36

mvp ENSDARG00000021242 Chr. 3: 15.33Rev 68 83 46 68

ppp4ca ENSDARG00000070570 Chr. 3: 26.79 93 95 94 93

ppp4cb ENSDARG00000076439 Chr. 12: 4.65Rev 98 98 98 98

prrt2 ENSDARG00000089367 Chr. 12: 5.77Rev 36 15 9 24

sez6l2 ENSDARG00000076052 Chr. 3: 14.86Rev 56 80 78 56

taok2a ENSDARG00000074899 Chr. 3: 21.37Rev 70 89 87 69

taok2b ENSDARG00000079261 Chr. 12:  4.50Rev 62 70 85 62

tbx24 ENSDARG00000011785 Chr.12:   4.59 19 18 19 20

ypel3 ENSDARG00000055510 Chr. 3: 26.84 89 ND 98 89

Table S1. Gene Assignment and Conservation.  
a  D. rerio gene names, which correspond to homologs indicated in Fig. 1. 
b Ensembl identifiers (Release 62, April 2011).   
c Chromosomal location (Release 62, April 2011). Chromosomal orientation of the zebrafish gene 
is on the plus strand unless the location number is followed by “Rev”. 
d Zebrafish percent identity with human, fugu, medaka, and mouse homologs of human 16p11.2 
genes is shown.  
e As the gdpd3 gene on chromosome 12 is incomplete, the gdpd3 gene on chromosome 3 was 
used for all phenotypic assays performed.  
D. rerio, Danio rerio; Chr., chromosome; ND, not determined.  
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Table S2 

 
 

Gene Namea MO Sequence (5' to 3') Splice or Translation Blocking Forward Reverse

aldoaa CCATGCTGAGGAGGAATGCAAGATT Splice Site GACACTGGTTCATGGCATTG GCATCAAAGTGGACAAGGGT

AGATGCATGGCATCGTTCCAATCG# GGGCCTTGTACACAGCAGCCA#

asphd1 GAGAGCTTCCCATGTCTGACCTGAT Splice Site AGCAGCTCAGGCCGTTCCTCAT GAGTGGGAACACAGTCTGGCCCTTT

GCAATCAGGCCAGGATCAAT# ATAGCTGGCCTCCAGAACCT#

c16orf53 GGAGTGTTGTAAAGCTCATACTGTT Splice Site CGCTGGGAGTCGGTGAACGG CTCCTGCGTGTGGTCCTGCG

CGACGGAGGACAACACTGCAGAAG# CTCCTCATCACTGTAAGGGATCATCC#

cdipt TTGTACCTAAGGACGAGGCACGAAT Splice Site GCCAGACTTCAGCAGACACA TTTAATCGGATATGCCCGTATCGTAC

GTGCGCTCAATCAAGGTACAAAATTTGGTGC# ACGGGTACAGCAGTGCCAGGT#

coro1a TGGTTTCTGATGTGGTTTACCTGCA Splice Site GAGGAGCCTTCATTGTCCTG ACGTTCCAGAGGATCACCAC

TGTAGTGTCATGATCTGGGAGA# TCACAGCCTGCACTCATTAG#

ATGAAGTCCTTGTCACTCACCATGA Splice Site ATCTGGGAGATTCCAGAGGG^ ATTATCACAGCCTGCACTCAT^

doc2a CGCAGCTACACAATCACAGGAATGA Splice Site ACTGCGCTGGGGACGCTAGA AATCCCCCTCGCCGGGACTC

GCACCATCATCAGAGCAAAGGGTTTG# TTGGCCTTGCATGCTCCTGGTAGA#

fam57ba ATGCCTGGAAGGAAAATGGAAGAGA Splice Site ATCTGACGCTGCTCAACCTT ATAATCCCCTTTGCCCTGTC

CTTGTAAAGACATCATCGAGGACCAGC# GTACCAGTAGCACAAGAACATGGCA#

gdpd3 GCTCGCCATATTTCCCAAAACAATT Translation Start Site NA NA

TGTTTTCCGCAAATTTCCTC* CAGCGCTTTTCTCATTGTCA*

hirip3 TTATCGCGTCCTTTTCTTTGGCCAT Translation Start Site NA NA

CTTTTCAGTCACTTGTTTACCTGCA Splice Site TGGGAAGAGAGTCGCTCAGT*^ TTCCTCGCTGTCTGAATCCT*^

ino80e CCTCTACTTCTGCTTGCCCGTTCAT Translation Start Site NA NA

AACGGGCAAGCAGAAGTAGA*^ GGAAGAGAGTGGACCAACCA*^

AGATGGTAACGTACTTACATACACC Splice Site

kctd13 CCAGCCTTCAATACAAATGGACACA Splice Site GTACTCCCCTGATGTCTGCC CTCTGCGTTTCTGTAATGTGGT

AGCATCGACTCTGAAGGCTGGGTG# CTCCTCCAGCTCCCTCGTGCT#

kif22 CTTTCCTGAGGTGAAGAACAAGAAT Splice Site GTGTTGCTGTGAACGATGGA GGAGCGCTGGTTGAGTTTAG

CAGGCCGTTGTTACTCCATT* CAAAGTGGTAGATGCGCTGA*

GTTTCTGACCTCCGTCAAGC# TCCAACCAGATTGAAGACCTC#

mapk3 GCTACTGCCCGATTCCGCCATCGTT Translation Start Site NA NA

CCTGAACATGACCACACTGG* GGAGGTAGTTCCTGGCCTTC*^

GTACGATATAGCTGAAACGCGGTTA Splice Site CATCATCGGGATCAATGACA^

maz ACTGGTTTTACTGGGAAAGAGAAGA Splice Site ATGCAGCTTGGAGCAATTTT CCTGCTTCCCAAAAGTATGC

ACCCTCCAATCAGATCTTCTC*# GATTCTTCCTGACCGGATTG*

GTTTTACCGGCGGCATGG#

mvp TGCAGTCTTTCAGATTACCTCTCAT1 Splice Site CCCACCTCACCACTACATCC^ AATGTATCCCGGCAACAAAG

GAGGGACCAGGGACCTACAT* TCTGCAACTGAGGGAATGTG*^

TCCATGTTTCTTCCTACGGGCATTC2 Translation Start Site NA NA

GGTCCCTGCCGGATTTAAAACACAG3 Splice Site

ppp4ca GTGGAGTAAAAGGAGTTACCTTGCT Splice Site GCGACTTCACTGACCTGGAC CTGGCCATGTATGTCACCAC

CAAAGCAAGGGAGATTCTGG*#^ CTGTCAGGGTATCGCACCTT*

GTTTGTTTCCGGGACTTCAC#

CCGACCTAAAGACAATCATCAGAGA Splice Site GCAGAGCCGTATTTTCGATG^

prrt2 ACGCCTGATGGTACTCTGTTTCCAT Translation Start Site NA NA

AGAATTTGAAAGTACCGCTCTCTGC Splice Site GGAGAGGTCATCGTGATGGT*^ GCTCCAGACTGTTCCTCGAC*^

sez6l2 TCACAGCAAAAACTGTGGACACCAT Translation Start Site NA NA

GCACTGAACTGAAGAAACAGTTTGT Splice Site TTTCTAGTCCCCGCCCCCTGG*^ AGGTGCACTCCAGTGGGGAAA*^

taok2a TAATGGTGTGGCTTGCTCACAAAGT Splice Site CCGTGTGTTGATTTGAAACG GCCCTGAAGTGCACCGTGGG

GGAGCAGTGTACTTTGCTCACGAT# GGGGTGTCTGAGCTTCTGCAAGA#

taok2b CCATCCTGAAAACACAGCACAACTC Splice Site AAAGCTGCGGCACCCCAACA GCAGGTGATGCCGAGTGACCA

GTGGGCACACCTTACTGGATGGC# TGCCGAGTGACCACACGTCA#

tbx24 CATTTCCACACCCAGCATGTCTCGG Translation Start Site ACATGTGAGATGGCAGCTCGCG* TGAGTTTGGCCCGGTGGAAGGA*

ypel3 CCTACGTTCACCCTAAAAACACAAA Splice Site AGCAGACCAAGGCCAAAACT TCAGTCCCAGCCATTATCCT

GCAGTCAAGGACGAGCCTAC*

TCAAGGACGAGCCTACCTGT# CAGTGTGGTGTGGCAATTCT#

Primer Sequences (5' to 3')cAntisense Morpholino Oligonucleutideb

Table S2. Primer and MO sequences.  
a Gene names corresponding with zebrafish genes included in Table S1 that were  targeted for loss of 
function (LOF) by antisense morpholino oligonucleotides (MOs).  
b MO sequences and primer sequences are listed 5’-3’. Splice site MOs are designed to either the donor 
or acceptor side of the intron - exon boundary. Where multiple MOs are shown for one gene, the top-
most MO was used for phenotypes reported.  
c The first set of primers listed for each gene was used to monitor changes in splicing after MO injection, 
except for translation-blocking MOs (NA).  
1, 2, 3  mvp MOs are included in this order in Tables 1, 2, and S3. mvp MO1 is included in Figs. 2A and 3. 
* Indicates primers used for the developmental expression timing RT-PCR if different from those used 
to monitor changes in splicing.  
# Represents primers used for qPCR.  
^ Indicates primers used to monitor changes in splicing for second or third MOs (see Table 1), whose 
phenotypes are otherwise not reported (aside from reporting for mvp MOs in Tables 2 and S3). 
NA, not applicable.	
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Table S3 
 
	
  

	
  
	
  

Brain Phenotypesb Tail & Muscle Phenotypesc Movement Phenotypesd

Gene Namea
Total 

Embryos
Affected 
Embryos

Abnormal 
Brain %

Total 
Embryos

Affected 
Embryos

Abnormal 
Tail %

Total 
Embryos

Affected 
Embryos

Abnormal 
Movement %

aldoaa 152 141 93 152 140 92 104 88 85
asphd1 198 193 97 115 115 100 115 0 0
c16orf53 90 66 73 90 66 73 90 0 0
cdipt 117 104 89 117 0 0 117 0 0
coro1a 106 94 89 106 92 87 91 87 96
doc2a 140 83 59 140 0 0 140 0 0
fam57ba 169 162 96 169 162 96 71 65 92
gdpd3 88 65 74 100 83 83 99 89 90
hirip3 102 102 100 150 131 87 150 123 82
ino80e 103 100 97 103 97 94 68 68 100
kctd13 165 149 90 115 107 93 75 65 87
kif22 351 308 88 351 313 89 242 238 98
mapk3 158 154 97 158 156 99 124 123 99
maz 202 170 84 201 149 74 46 44 96
mvp1 167 145 87 167 145 87 67 65 97
mvp2 28 18 64 28 18 64 ND ND ND
mvp3 50 50 100 50 50 100 40 40 100
ppp4ca 101 96 95 101 83 82 97 71 73
prrt2 64 5 8 64 5 8 64 1 2
sez6l2 47 42 89 109 99 91 109 0 0
taok2a 71 62 87 71 0 0 21 10 48
taok2b 74 67 91 78 65 83 78 0 0
tbx24 95 0 0 95 95 100 95 95 100
ypel3 49 47 96 49 38 78 47 42 89

Table S3. Quantification of brain, tail, and movement phenotypes. Data was gathered in 2-7 
experiments for each LOF condition and includes 24 - 48 hpf experimental timepoints. Data is 
summarized in Fig. 3 and representative images are shown in Fig. 2.  
a Genes indicated in Table S1 were targeted in LOF experiments by MOs included in Table S2, 
using MO mass tabulated in Table 2. Where multiple MOs were designed, this table represents 
data obtained using the first MO listed in Table S2, aside from mvp, where three genes are listed. 
b Brain phenotypes, including abnormally shaped ventricle neuroepithelium were observed in 24 
hpf LOF embryos using criteria described in Methods and shown in Figs. 2 and 3. Phenotypes 
observed for forebrain, midbrain, and hindbrain were included as a group in the number of 
abnormally affected embryos that is indicated.  
c Summation of major categories of tail and muscle phenotypes (including tail length, extension, 
and shape and muscle segment chevron abnormalities) were observed in 24 hpf LOF embryos 
using criteria described in Methods and data shown in Figs. 2 and 3. The number of abnormally 
affected embryos is indicated. 
d Movement abnormalities (which may arise from motor neuron or muscular defects) include 
grouping of spontaneous movement and touch response defects, which are assays described in 
Methods. The number of abnormally affected embryos are indicated.  
1, 2, 3 The mvp MOs are included in the same order as Tables 2 and S2.  
1 Indicates the mvp MO that is included in Figs. 2 and 3. 
ND, not determined.  
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Table S4 

 

Gene 

Namea

Human or 

Fish Geneb

GenBank 

Accession No.c Parent Vectord
Cloning into pCS2+e                            

(primers 5' to 3' or restriction enzymes)

in situ sense probe 

preparationf

in situ antisense 

probe preparationf

mMessage rescue 

mRNAg

ALDOA human NM_184043.1 pINCY EcoRI/SalI SP6 Pol, NotI RE
aldoaa zebrafish BC065320 pCMV-SPORT6.1 NAh SP6 Pol, NotI RE T7 Pol, KpnI RE 
ASPHD1 human BC126319 pCR4-TOPO EcoRI/XbaI SP6 Pol, NotI RE
asphd1 zebrafish NA NA GATCGGATCCTCTGATCCTCCATCCCACTC SP6 Pol, NotI RE T7 Pol, HindIII RE

GATCCTCGAGAGGTCCACGCTGAAGATGAC
C16ORF53 human BC003640 pOTB7 AAGAATTCCTGCCCTAGTGGCCTATGTCCC  SP6 Pol, NotI RE

AACTCGAGTCAGTATTTCCGCTGCCGAGGG
c16orf53 zebrafish NA NA AAGAATTCTTAATCACCCCGCGCGGCTC SP6 Pol, XhoI RE T7 Pol, EcoRI RE 

AACTCGAGCCCCTCTGAAAGACTGAGCTGTCC
CDIPT human BC001444.2 pOTB7 EcoRI/BglII (blunt) to StuI site in pcs2+ SP6 Pol, NotI RE
cdipt zebrafish BC066511 pCMV-SPORT6.1 NAh SP6 Pol, NotI RE T7 Pol, SpeI RE
CORO1A human BC110374 pCMV-SPORT6 ATTAGGATCCCAGAATGAGCCGGCAGGTGGT SP6 Pol, NotI RE

GCATCTCGAGGGCTCTACTTGGCCTGGACTG
coro1a zebrafish BC055237.1 pME18SFL3 EcoRI/XbaI SP6 Pol, XbaI RE T7 Pol, EcoRI RE 
DOC2A human BC041769 pBluescriptR AAGAATTCGCCAGGGGTGCTGCATGAGG SP6 Pol, NotI RE

AATCTAGATGTGCCGGGACACTGCTGTC
doc2a zebrafish NA NA GATCGGATCCCCCTGCTTCTCCACTGTCTC SP6 Pol, NotI RE T7 Pol, HindIII RE

GATCCTCGAGACTGTGACCTCCAGCGTCTT
FAM57B human BC007892 pOTB7 EcoRI/XhoI SP6 Pol, NotI RE
fam57b zebrafish BC059567 pBluecript SK(-) NAh T3 Pol, XhoI RE T7 Pol, EcoRI RE na
GDPD3 human BC002714 pOTB7 EcoRI/XhoI (Removes 3'UTR) SP6 Pol, NotI RE
gdpd3 zebrafish BC064306 pExpress-1 NAh SP6 Pol, NotI RE T7 Pol, EcoRV RE
HIRIP3 human NM_003609 pCMV6-AC AAGAATTCGAGCCGTCAATCCCGGGTTG SP6 Pol, NotI RE

AACTCGAGTGGGGGTGGCAGAGCTCAGT
hirip3 zebrafish BC055674 pME18SFL3 XhoI SP6 Pol, NotI RE T7 Pol, HindIII RE
INO80E human BC047712.2 pCMV-SPORT6 ATTAGGATCCGGTCATGAACGGGCCGGCGGACG SP6 Pol, NotI RE

GCATCTCGAGCACGGTCACTCCGGGATGTCGAT
ino80e zebrafish BC065338 pCMV-SPORT6 NAh SP6 Pol, XhoI RE T7 Pol, StuI RE
KCTD13 human BI548684.1 pBluescriptR
kctd13 zebrafish BC122284 pME18SFL3 XhoI SP6 Pol, BglII RE T7 Pol, EcoRI RE SP6 Pol, NotI RE
KIF22 human BC028155 pCMV-SPORT6 EcoRI/XhoI (114 n.t. of 3' UTR remains) SP6 Pol, NotI RE
kif22 zebrafish BC154464 pME18SFL3 XhoI SP6 Pol, XbaI RE T7 Pol, EcoRI RE 
MAPK3 human BC013992 pOTB7 TGTAAAACGACGGCCAGTAA SP6 Pol, NotI RE

GGTGCAGAGATGTCTGTCTGG
mapk3 zebrafish BC097073 pCMV-SPORT6 NAh SP6 Pol, XhoI RE T7 Pol, EcoRV RE
maz zebrafish NA NA ACGTCATGATGGATGCAGCTTGG SP6 Pol, NotI RE T7 Pol, EcoRI RE SP6 Pol, NotI RE

CCTCTCTCCTGTTGGTTAGCTG
MVP human BC015623 pOTB7 EcoRI/XhoI (93 n.t. of 3' UTR remains) SP6 Pol, NotI RE
mvp zebrafish BC063949.1 pExpress-1 NAh SP6 Pol, NotI RE T7 Pol, EcoRI RE 
mvp zebrafish BC063949.2 pExpress-1 EcoRI/NsiI SP6 Pol, NotI RE
PPP4C human BC001416 pOTB7 EcoRI/XhoI (301 n.t. of 3' UTR remains) SP6 Pol, NotI RE
ppp4ca zebrafish BC049430 pME18SFL3 EcoRI/XbaI SP6 Pol, XbaI RE T7 Pol, EcoRI RE 
ppp4cb zebrafish BC155609 pExpress-1 NAh SP6 Pol, NotI RE T7 Pol, EcoRV RE
prrt2 zebrafish BC053594 pCMV-SPORT6 NA NA NA NA
SEZ6L2 human BC000567 pOTB7 AAGAATTCAGAGATCGGGGTGAGTCGCCA SP6 Pol, NotI RE

AAACTAGTTGCAGCTGTAGTCTTGGGGTTCA
sez6l2 zebrafish NA NA GATCGGATCCCATACGCCACAATGACGTTC SP6 Pol, NotI RE T7 Pol, HindIII RE

GATCTCTAGACTCCACTGTAATGGGGCTGT
TAOK2 human BC142663 pCMV-SPORT6 AAGAATTCTACCAGGCCAGGCCCCACTC SP6 Pol, NotI RE

AAACTAGTCAGCTaCCTCCAGGGGGGCAG
taok2a zebrafish pGEM-T Easy AGCGGGCGAGCAGGTACAC T7 Pol, SpeI RE SP6 Pol, SacII RE

ATGGGGGCGCTCTCGGCATAA
taok2b zebrafish pGEM-T Easy CCTTCAAAAGCTGCGGCACCC T7 Pol, SpeI RE SP6 Pol, SacII RE

TGATTCAGTGCTTTGTGCAGCACG
TBX6 human BC026031 pOTB7 

YPEL3 human BC050664 pCMV-SPORT6 EcoRI/XhoI (48 n.t. of 3' UTR remains) SP6 Pol, SacII RE
ypel3 zebrafish BC067578 pCMV-SPORT6 NAh SP6 Pol, XhoI RE T7 Pol, KpnI RE 

Table S4. Human and zebrafish cDNA clones.  
a Genes indicated in Fig. 1 for zebrafish and human. 
b Human genes were used for rescue experiments, except for kctd13 and maz. Zebrafish genes 
were used for in situ probe preparation, and for rescue of kctd13 and maz. 
c Clones were ordered for human genes, and where available, for zebrafish genes. 
d Parent vector of clones. 
e cDNAs were subcloned into pCS2+ for in vitro mRNA transcription. Primers or restriction 
sites used for subcloning are listed and were designed to remove the majority of untranslated 
regions of the cDNA, as these can promote degradation in the fish embryo. Primers were also 
used to amplify zebrafish cDNAs where clones were not available. 
f Linearizing enzyme and polymerase used to generate sense and antisense probes. 
g Linearizing enzyme and polymerase used to generate rescue mRNA. 
h The cDNA used for in situ probes was left in the parent vector if appropriate polymerase and 
restriction binding sites were present. 
Pol, polymerase; RE, restriction enzyme; n.t., nucleotide; UTR, untranslated region; NA, not 
applicable. 
	
  




