250 research outputs found

    Some hematopoietic stem cells are more equal than others

    Get PDF
    Hematopoietic stem cells (HSCs) save lives in routine clinical practice every day, as they are the key element in transplantation-based therapies for hematologic malignancies. The success of clinical stem cell transplantation critically relies on the ability of stem cells to reconstitute the hematopoietic system for many decades after the administration of the powerful chemotherapy and/or irradiation that is required to eradicate malignant cells, but also irreversibly ablates patients’ own blood forming capacity. Surprisingly, despite enormous efforts and continuous progress in the field, our understanding of the basic biology of HSCs is still rather incomplete. Several recent studies substantially refine our understanding of the cells at the very top of the hematopoietic hierarchy, and suggest that we may need to revise the criteria we typically use to identify and define HSCs

    Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'

    Get PDF
    We combined large-scale mRNA expression analysis and gene mapping to identify genes and loci that control hematopoietic stem cell (HSC) function. We measured mRNA expression levels in purified HSCs isolated from a panel of densely genotyped recombinant inbred mouse strains. We mapped quantitative trait loci (QTLs) associated with variation in expression of thousands of transcripts. By comparing the physical transcript position with the location of the controlling QTL, we identified polymorphic cis-acting stem cell genes. We also identified multiple trans-acting control loci that modify expression of large numbers of genes. These groups of coregulated transcripts identify pathways that specify variation in stem cells. We illustrate this concept with the identification of candidate genes involved with HSC turnover. We compared expression QTLs in HSCs and brain from the same mice and identified both shared and tissue-specific QTLs. Our data are accessible through WebQTL, a web-based interface that allows custom genetic linkage analysis and identification of coregulated transcripts.

    The many faces of hematopoietic stem cell heterogeneity

    Get PDF
    Not all hematopoietic stem cells (HSCs) are alike. They differ in their physical characteristics such as cell cycle status and cell surface marker phenotype, they respond to different extrinsic signals, and they have different lineage outputs following transplantation. The growing body of evidence that supports heterogeneity within HSCs, which constitute the most robust cell fraction at the foundation of the adult hematopoietic system, is currently of great interest and raises questions as to why HSC subtypes exist, how they are generated and whether HSC heterogeneity affects leukemogenesis or treatment options. This Review provides a developmental overview of HSC subtypes during embryonic, fetal and adult stages of hematopoiesis and discusses the possible origins and consequences of HSC heterogeneity

    Injection of Human Bone Marrow and Mononuclear Cell Extract into Infarcted Mouse Hearts Results in Functional Improvement

    Get PDF
    Background: We have previously shown that mouse whole bone marrow cell (BMC) extract results in improvement of cardiac function and decreases scar size in a mouse model of myocardial infarction (MI), in the absence of intact cells. It is not clear if thes

    Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells

    Full text link

    Leucocyte and Platelet-rich Fibrin: A carrier of autologous multipotent cells for regenerative medicine

    Get PDF
    The wound healing is a complex process wherein inflammation, proliferation and regeneration evolve according to a spatio-temporal pattern from the activation of coagulation cascade to the formation of a plug clot including fibrin matrix, blood-borne cells and cytokines/growth factors. Creating environments conducive to tissue repair, the haemoderivatives are commonly proposed for the treatment of hard-to-heal wounds. Here, we explored in vitro the intrinsic regenerative potentialities of a leucocyte- and platelet-rich fibrin product, known as CPL-MB, defining the stemness grade of cells sprouting from the haemoderivative. Using highly concentrated serum-based medium to simulate wound conditions, we isolated fibroblast-like cells (CPL-CMCs) adhering to plastic and showing stable in vitro propagation, heterogeneous stem cell expression pattern, endothelial adhesive properties and immunomodulatory profile. Due to their blood derivation and expression of CXCR4, CPL-CMCs have been suggested to be immature cells circulating in peripheral blood at quiescent state until activation by both coagulation event and inflammatory stimuli such as stromal-derived factor 1/SDF1. Expressing integrins (CD49f, CD103), vascular adhesion molecules (CD106, CD166), endoglin (CD105) and remodelling matrix enzymes (MMP2, MMP9, MMP13), they showed a transendothelial migratory potential besides multipotency. Taken together, our data suggested that a standardized, reliable and economically feasible blood product such as CPL-MB functions as an artificial stem cell niche that, under permissive conditions, originate ex vivo immature cells that could be useful for autologous stem cell-based therapies

    Fgd5 identifies hematopoietic stem cells in the murine bone marrow

    Get PDF
    Hematopoietic stem cells (HSCs) are the best-characterized tissue-specific stem cells, yet experimental study of HSCs remains challenging, as they are exceedingly rare and methods to purify them are cumbersome. Moreover, genetic tools for specifically investigating HSC biology are lacking. To address this we sought to identify genes uniquely expressed in HSCs within the hematopoietic system and to develop a reporter strain that specifically labels them. Using microarray profiling we identified several genes with HSC-restricted expression. Generation of mice with targeted reporter knock-in/knock-out alleles of one such gene, Fgd5, revealed that though Fgd5 was required for embryonic development, it was not required for definitive hematopoiesis or HSC function. Fgd5 reporter expression near exclusively labeled cells that expressed markers consistent with HSCs. Bone marrow cells isolated based solely on Fgd5 reporter signal showed potent HSC activity that was comparable to stringently purified HSCs. The labeled fraction of the Fgd5 reporter mice contained all HSC activity, and HSC-specific labeling was retained after transplantation. Derivation of next generation mice bearing an Fgd5-CreERT2 allele allowed tamoxifen-inducible deletion of a conditional allele specifically in HSCs. In summary, reporter expression from the Fgd5 locus permits identification and purification of HSCs based on single-color fluorescence
    corecore