15 research outputs found

    Stage-specific expression of a Schistosoma mansoni polypeptide similar to the vertebrate regulatory protein stathmin.

    Get PDF
    The ubiquitous vertebrate protein stathmin is expressed and phosphorylated in response to a variety of external and internal signals. Stathmin, in turn, controls cell growth and differentiation through its capacity to regulate microtubule assembly dynamics. This is the first report on the molecular cloning and characterization of a stathmin-like protein (SmSLP) in an invertebrate, the human blood fluke Schistosoma mansoni. SmSLP is first synthesized at high levels in the intermediate molluscan host and completely disappears 48 h after penetration into the mammalian host. The protein is preferentially iodinated in intact immature parasites using the Bolton-Hunter reagent, can be quantitatively extracted in high salt buffers, and remains soluble after boiling. Native SmSLP was partially sequenced, and its complete structure was derived from the cloning and sequencing of its cDNA. The sequence is up to 26% identical to vertebrate stathmin sequences and contains two potential phosphorylation sites. Native SmSLP is indeed phosphorylated because phosphatase digestion shifts its mobility in electrofocusing gels. SmSLP associates with tubulin, as suggested by immune co-precipitation results. In vitro experiments demonstrated that SmSLP inhibits tubulin assembly and causes the depolymerization of preassembled microtubules, thus probably fulfilling regulatory roles in critical steps of schistosome development

    Bestial boredom: a biological perspective on animal boredom and suggestions for its scientific investigation

    Get PDF
    Boredom is likely to have adaptive value in motivating exploration and learning, and many animals may possess the basic neurological mechanisms to support it. Chronic inescapable boredom can be extremely aversive, and understimulation can harm neural, cognitive and behavioural flexibility. Wild and domesticated animals are at particular risk in captivity, which is often spatially and temporally monotonous. Yet biological research into boredom has barely begun, despite having important implications for animal welfare, the evolution of motivation and cognition, and for human dysfunction at individual and societal levels. Here I aim to facilitate hypotheses about how monotony affects behaviour and physiology, so that boredom can be objectively studied by ethologists and other scientists. I cover valence (pleasantness) and arousal (wakefulness) qualities of boredom, because both can be measured, and I suggest boredom includes suboptimal arousal and aversion to monotony. Because the suboptimal arousal during boredom is aversive, individuals will resist low arousal. Thus, behavioural indicators of boredom will, seemingly paradoxically, include signs of increasing drowsiness, alongside bouts of restlessness, avoidance and sensation-seeking behaviour. Valence and arousal are not, however, sufficient to fully describe boredom. For example, human boredom is further characterized by a perception that time ‘drags’, and this effect of monotony on time perception can too be behaviourally assayed in animals. Sleep disruption and some abnormal behaviour may also be caused by boredom. Ethological research into this emotional phenomenon will deepen understanding of its causes, development, function and evolution, and will enable evidence-based interventions to mitigate human and animal boredom

    Existence of homoclinic solutions to periodic orbits in a center manifold

    Get PDF
    AbstractConsider a Lagrangian of the formL(x,ẋ,q,q̇)=12(ẋ2−x2)+12q̇2+(1+δ(x))V(q),where x, q∈R. Assuming that δ is bounded and V, periodic in q, is such that V′(0)=0, we prove existence of infinitely many solutions homoclinic to periodic orbits in the center manifold q=0, q̇=0 of the corresponding system

    EXISTENCE OF HOMOCLINIC SOLUTIONS TO PERIODIC ORBITS IN A CENTER MANIFOLD

    Get PDF
    We consider an autonomous, second order Hamiltonian system having a saddle-center stationary point whose center manifold is foliated in periodic orbits and we prove existence of infinitely many solutions asymptotic, as time goes to +∞ and -∞ to some of such periodic orbits. The proof is based on critical point theory
    corecore