311 research outputs found

    Convergence or divergence of continuing vocational training in Europe? Empirical findings and theoretical conclusions for adult education

    Get PDF
    The paper describes trends of convergence and divergence in enterprise-provided continuing vocational training in Europe between 1999 and 2005. Based on the survey CVTS, the indicators for courses incidence, access, intensity, direct costs and the indicator learning at the workplace will be analyzed. The paper concludes with an outlook with references to sketches of an educational theory to be written for this field of adult education

    Inhibition of Nonsense-Mediated mRNA Decay by Antisense Morpholino Oligonucleotides Restores Functional Expression of hERG Nonsense and Frameshift Mutations in Long-QT Syndrome

    Full text link
    Mutations in the human ether-a-go-go-related gene (hERG) cause long-QT syndrome type 2 (LQT2). We previously described a homozygous LQT2 nonsense mutation Q1070X in which the mutant mRNA is degraded by nonsense-mediated mRNA decay (NMD) leading to a severe clinical phenotype. The degradation of the Q1070X transcript precludes the expression of truncated but functional mutant channels. In the present study, we tested the hypothesis that inhibition of NMD can restore functional expression of LQT2 mutations that are targeted by NMD. We showed that inhibition of NMD by RNA interference-mediated knockdown of UPF1 increased Q1070X mutant channel protein expression and hERG current amplitude. More importantly, we found that specific inhibition of downstream intron splicing by antisense morpholino oligonucleotides prevented NMD of the Q1070X mutant mRNA and restored the expression of functional Q1070X mutant channels. The restoration of functional expression by antisense morpholino oligonucleotides was also observed in LQT2 frameshift mutations. Our findings suggest that inhibition of NMD by antisense morpholino oligonucleotides may be a potential therapeutic approach for some LQT2 patients carrying nonsense and frameshift mutations

    Interpreting the functional role of a novel interaction motif in prokaryotic sodium channels

    Get PDF
    Voltage-gated sodium channels enable the translocation of sodium ions across cell membranes and play crucial roles in electrical signaling by initiating the action potential. In humans, mutations in sodium channels give rise to several neurological and cardiovascular diseases, and hence they are targets for pharmaceutical drug developments. Prokaryotic sodium channel crystal structures have provided detailed views of sodium channels, which by homology have suggested potentially important functionally related structural features in human sodium channels. A new crystal structure of a full-length prokaryotic channel, NavMs, in a conformation we proposed to represent the open, activated state, has revealed a novel interaction motif associated with channel opening. This motif is associated with disease when mutated in human sodium channels and plays an important and dynamic role in our new model for channel activation

    International criteria for electrocardiographic interpretation in athletes: Consensus statement.

    Get PDF
    Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD

    Recurrent and Founder Mutations in the Netherlands: the Long-QT Syndrome

    Get PDF
    Background and objective The long-QT syndrome (LQTS) is associated with premature sudden cardiac deaths affecting whole families and is caused by mutations in genes encoding for cardiac proteins. When the same mutation is found in different families (recurrent mutations), this may imply either a common ancestor (founder) or multiple de novo mutations. We aimed to review recurrent mutations in patients with LQTS. Methods By use of our databases, we investigated the number of mutations that were found recurrently (at least three times) in LQT type 1-3 patients in the Netherlands. We studied familial links in the apparently unrelated probands, and we visualised the geographical distribution of these probands. Our results were compared with published literature of founder effects in LQTS outside the Netherlands. Results We counted 14 recurrent LQT mutations in the Netherlands. There are 326 identified carriers of one of these mutations. For three of these mutations, familial links were found between apparently unrelated probands. Conclusion Whereas true LQT founder mutations are described elsewhere in the world, we cannot yet demonstrate a real founder effect of these recurrent mutations in the Netherlands. Further studies on the prevalence of these mutations are indicated, and haplotype-sharing of the mutation carriers is pertinent to provide more evidence for founder mutation-based LQTS pathology in our countr

    Next-Generation Sequencing in Post-mortem Genetic Testing of Young Sudden Cardiac Death Cases.

    Get PDF
    Sudden cardiac death (SCD) in the young (<40 years) occurs in the setting of a variety of rare inherited cardiac disorders and is a disastrous event for family members. Establishing the cause of SCD is important as it permits the pre-symptomatic identification of relatives at risk of SCD. Sudden arrhythmic death syndrome (SADS) is defined as SCD in the setting of negative autopsy findings and toxicological analysis. In such cases, reaching a diagnosis is even more challenging and post-mortem genetic testing can crucially contribute to the identification of the underlying cause of death. In this review, we will discuss the current achievements of "the molecular autopsy" in young SADS cases and provide an overview of key challenges in assessing pathogenicity (i.e., causality) of genetic variants identified through next-generation sequencing

    Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention.

    Get PDF
    Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death

    Cardiac sodium channelopathies

    Get PDF
    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (INa) during phase 0 of the cardiac action potential. The importance of INa for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in SCN5A, the gene responsible for the pore-forming ion-conducting α-subunit, or in genes that encode the ancillary β-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which INa dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase INa delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce INa decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced INa dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies

    Neurological perspectives on voltage-gated sodium channels

    Get PDF
    • …
    corecore