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Summary

Epidemiologic studies clearly document the public health burden of sudden unexpected death in 

epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory 

dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in 

humans and in model systems have facilitated our current molecular understanding of SUDEP. 

Many discoveries have been informed by progress in the field of sudden cardiac death and sudden 

infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of 

sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. 

Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and 

prevention rests in international, collaborative, and transdisciplinary dialogue in human and 

experimental translational research of sudden death.
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Individual risk prediction remains challenging: A particular concern is that patients with 

relatively well-controlled epilepsy, including those with infrequent seizures, remain at risk 

for sudden death.1 The focus of this article is to explore the role of genetic factors in sudden 
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unexpected death in epilepsy (SUDEP). In this, we draw on research in sudden cardiac death 

(SCD) and sudden infant death syndrome (SIDS).

Lessons from Research on the Genetics of Sudden Cardiac Death

The annual rate of SCD is estimated at 50–100,000 in the United Kingdom and 300,000 in 

the United States.2 Sudden arrhythmic death syndrome (SADS) refers to SCDs that remain 

unexplained despite a comprehensive autopsy and toxicology, and are presumed to be due to 

genetic causes such as familial long-QT syndrome (LQTS) and Brugada syndrome (BrS).3,4 

This accounts for 4% of SCDs in patients younger than 64 years of age and up to 40% in 

patients younger than 35.5 Much is known about these monogenic conditions and their 

presentation.6 Yet, it is increasingly evident that oligogenicity (interactive influence of a 

small number of genes) and common genetic variation may modify pathogenesis of these 

disorders and the risk of SCD.7–10

Evidence for a genetic basis for SCD in the young

Structural cardiac disease accounts for approximately 60% of sudden death in that occurs in 

the young before 35 years of age.11 In the presence of familial disease, candidate gene 

testing will identify mutations in ~60% hypertrophic, 25% dilated, and 40% arrhythmogenic 

right ventricular cardiomyopathies.12 Diagnostic yield in patients with SADS rests in the 

profiling of genes responsible for LQTS, BrS, and catecholaminergic polymorphic 

ventricular tachycardia (CPVT): cardiac potassium channel alpha and beta subunits KCNQ1, 

KCNH2, KCNE1, and KCNE2; the cardiac sodium channel alpha subunit SCN5A; and the 

sarcoplasmic reticulum calcium release channel, the Ryanodine receptor (RyR2),5,13 

respectively. The mutation prevalence in these genes is estimated at around 15–20%.5,14 

Careful cardiologic evaluation of the family can increase the detection rate from 22% to 

53%.15,16 It is now known that those at greatest risk may carry multiple genetic variants.12 

Multiple mutation carriers represent approximately 7% of LQTS probands, and they present 

with more severe disease.17

It has been established that even acquired arrhythmic risk is genetically influenced; in the 

Paris prospective study, the risk of SCD in middle-aged men was doubled in the presence of 

a parental SCD history.18 Investigation focused on common nonsynonymous single 

nucleotide polymorphisms (SNPs) found association of the SCN5A-S1103Y with an 

eightfold increased risk of SCD due to any cause in African Americans.19 Moreover, the 

S1103Y allele carriers had 8.4 (2.1–28.6) relative risk (RR) for SADS compared to 

noncardiac death and S1103Y homozygosity in infancy carried an odds ratio (OR) of 24.4 in 

SIDS risk.20,21

Evidence for a genetic basis to coronary SCD: Synonymous common genetic variation

In a large Dutch cohort, cardiac arrest due to ventricular fibrillation (VF) following a first 

acute ST-elevation myocardial infarction (STEMI) was threefold more common in those 

with a family history for SCD.22 Genome-wide association studies (GWAS) of 972 STEMI 

cases, of which 515 had a cardiac arrest, associated the risk of VF with the common 

polymorphism rs2824292 next to a coxsackievirus v receptor gene CXADR,10 which can 
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increased arrhythmogenicity in the setting of ischemia through altered cardiac conduction.23 

GWAS in a 1,268 SCDs identified and replicated the association of the rs4665058 common 

variant near the BAZ2B gene (bromodomain adjacent zinc finger domain 2B),9 with as yet 

unclear functional significance. GWAS of electrocardiographic phenotypes linked to SCD 

risk found the strongest association with the NOS1AP (nitric oxide synthase 1 adaptor 

protein) gene24 that has been linked to the risk of SCD in the general population as well as 

in congenital LQTS.25,26

Repolarization reserve: An example of genetic susceptibility to SCD

Acquired LQTS is an idiosyncratic and rare adverse drug reaction that causes both QT 

prolongation and torsades de pointes (TdP), the polymorphic ventricular tachycardia 

characteristic of congenital LQTS. It is an important issue in drug safety and development. 

A rare LQTS genetic variant is detected in approximately10% of cases.27 Much of the risk 

associated with S1103Y in African Americans in the early study by Splawski et al.19 was 

related to medications known to prolong the QT interval. S1103Y prolongs late sodium 

current that in turn delays cardiac repolarization. KCNE1-D85N, is another example of a 

common SNP associated with an eightfold increased risk of drug-induced TdP in people 

taking QT-prolonging drugs.28 Noncoding SNPs of the NOS1AP gene were also linked to 

the risk of drug-induced TdP in patients taking amiodarone, a commonly used 

antiarrhythmic agent.8 These data support the hypothesis of the “repolarization reserve,” a 

physiologic redundancy of capacity to repolarize the myocardium. Overt congenital LQTS is 

caused by rare functionally severe mutations while some rare or common genetic variations 

underlie a concealed genetic reduction of repolarization reserve, which prolongs the QT 

interval to a minimal extent.29 The risk of “acquired” LQTS increases with exposure to 

insults, such as QT-prolonging medications, hypokalemia, or subarachnoid hemorrhage, 

particularly as such factors may be additive. In addition, women tend to have longer QT 

intervals and are thus at higher risk for either congenital or acquired LQTS.

Implications for future research

Genetic testing due to SCD concern is relevant not only in suspected cardiomyopathy or 

arrhythmias but also in people with other disorders. The potential overlap with genetic risk 

in SUDEP remains to be explored. For example, the seizure-induced bradycardia, acidosis, 

and autonomic dysfunction may represent an insult to repolarization reserve. However, 

misdiagnosis of epilepsy also needs to be considered. Cerebral anoxia secondary to a cardiac 

arrhythmia may be responsible for the seizure phenotype, particularly in the young adult 

who dies after one, or only a few, seizures, or has exertion-related seizures. This clinical 

presentation of an arrhythmia syndrome must not be forgotten given the implications of risk 

to the family. Although only relevant to patients with some genetic epilepsies, there is also 

the possibility that the same genetic abnormality predisposing to epilepsy predisposes to 

SCD as discussed below. Finally, although molecular autopsy has started to be applied in 

SUDEP cases on a research basis, family assessment for SCD genetic risk may also be a 

good avenue to explore.
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The Genetic Spectrum of SUDEP

The panel of candidate SUDEP genes has been growing rapidly, and discoveries have been 

facilitated by progress in the field of SCD and SIDS, and by translational research in 

sophisticated animal models.

Arrhythmia genes

The discovery of cardiac voltage-gated sodium channel SCN5A in brain limbic regions 

provided the first link between genetically predisposed cardiac arrhythmias and epilepsy.30 

Subsequent clinical case studies supported the concept of a combined neurocardiac 

phenotype triggered by mutations in ion channels dually expressed in the brain and in the 

heart.31,32 This was followed by the report of epilepsy, cardiac arrhythmias, and SUDEP in 

transgenic mice carrying the human knock-in mutations in the most common LQT gene, the 

potassium channel KCNQ1.33 The observed model SUDEP event mirrored a previously 

described human case report,34 and the study uncovered some of the candidate networks and 

mechanisms involved in the lethal epilepsy outcome. Consequently, a seizure phenotype was 

identified in 28% of cases with confirmed LQTS caused by pathogenic variants in the 

KCNH2, KCNQ1, and SCN5A genes,35–37 and variants of suspected functional significance 

were uncovered in 10% of 48 SUDEP cases.38 Yet, the molecular underpinnings of 

neurocardiac interactions extend beyond the LQT gene family; a catecholaminergic 

polymorphic ventricular tachycardia (CPVT) is a dysrhythmia presenting with stress-

induced syncope39 and a high 30–50% mortality rate before the age of 3039 due to a defect 

in the ryanodine receptor (RYR2).40 The mouse model carrying the human mutation 

R2474S displayed exercise-induced ventricular arrhythmia and early onset spontaneous 

convulsive seizures, and lethal arrhythmia triggered sudden death.41 The combined 

phenotype of arrhythmias and seizures was also observed in 12 of 24 of Dutch CPVT 

families affected by RYR2 mutations39 and a missense variant RYR2-G4936A was found in 

an 8-year-old SUDEP case with history of epilepsy and recurrent, exercise-induced syncope 

with normal resting electrocardiography (ECG).42 The hyperpolarization-activated cyclic 

nucleotide-gated ion channels HCN1-4 are implicated in epilepsy and cardiac arrhythmias, 

owing to their involvement in the generation of the cation (Na+ and K+)–triggered Ih 

depolarizing current that facilitates action potential and a spontaneous rhythmic activity in 

the neurons and pacemaking cardiomyocytes.43–48 The HCN2-deficient mouse displays 

absence epilepsy and sinus arrhythmia,49 albeit without evidence of a reduced life span. A 

clinically confirmed phenotype of epilepsy and arrhythmia in humans has not yet been 

observed, although HCN coding variants of suspected functional significance were 

uncovered in a mutational screen of 48 SUDEP cases.50 Therefore, the involvement of HCN 

channels in clinically manifest arrhythmia or epilepsy justifies the consideration of this gene 

family in candidate SUDEP genes.

Epilepsy genes

Many ion channel genes regulating the central control of cardiac and respiratory function are 

also expressed within the brain networks thought to underlie epilepsy. For example, the 

voltage-gated potassium channel KCNA1 is expressed in brain and in the vagus nerve. The 

Kcna1 null mice show seizures, cardiac arrhythmias, vagal hyperexcitability, and premature 
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death.51 This channel was also clinically validated in a SUDEP case affected by epileptic 

encephalopathy and suspected cardiac dysrhythmias carrying de novo and novel KCNA1 
intragenic duplication.52 The report of familial SUDEP in a kindred affected by the genetic 

epilepsy syndrome generalized epilepsy with febrile seizures plus (GEFS+) while 

segregating a novel variant in SCN1A gene brought attention to this sodium channel 

subunit,53 a principal gene underlying the Dravet syndrome (DS). Patients with DS face an 

increased risk of premature mortality currently estimated to affect about 4–12% of 

children,54–56 and they seem predisposed to autonomic dysfunction, as evidenced by 

depressed heart rate variability (HRV)57,58 and increased P- and QT-interval dispersion.58 

The Scn1a deficient models mirror the complex human phenotype, exhibiting spontaneous 

seizures, autonomic instability, and seizure-driven vagal activation preceding sudden 

death.59,60 Administration of parasympatholytics reduced the incidence of ictal bradycardia 

and SUDEP in the model.60 A knock-in mouse model carrying the human mutation SCN1A-
R1407X61,62 displayed a 21% premature death rate, spontaneous seizures, and a prolonged 

QT interval due to the increased sodium channel–dependent cardiac current in 

cardiomyocytes.62 Cardiac arrhythmias in this model often preceded apparent convulsive 

seizures, thus indicating that some SCN1A variants might predispose to sudden death 

through neurocardiac or sole cardiac mechanisms.62 There is also experimental evidence that 

mortality risk in DS is influenced by the affected neuronal cell type and regionally specific 

differences in Scn1a brain expression; selective Nav1.1 deficiency in inhibitory γ-

aminobutyric acid (GABA)ergic neurons led to a more severe epileptic phenotype and early 

and frequent sudden death as compared to mice with constitutive Scn1a deficiency.61 Scn1a 
deficiency restricted to forebrain excitatory neurons combined with global Nav1.1 deficiency 

in inhibitory GABAergic neurons mitigated the seizure phenotype and lessened the 

incidence of model SUDEP.61 The discoveries linking KCNA1 and SCN1A to SUDEP 

brought attention to other epilepsy genes. The SCN1B gene encodes a voltage-gated sodium 

channel (VGSC) β subunit critical for proper gating and cell surface expression of the VGSC 

complex.63 SCN1B mutations are linked to GEFS+, temporal lobe epilepsy, as well as 

DS.64–66 The Scn1b null mouse model displays spontaneous seizures, prolonged QT and RR 

intervals, and early mortality.67,68 Spontaneous epilepsy and >30% premature mortality was 

also observed in a mouse deficient in the glutamic acid decarboxylase isoform GAD65.69 

Confirmation of SCN1B and GAD65 in human SUDEP awaits discovery. Comprehensive 

genomic profiling is certain to facilitate the finding of novel molecular candidates as shown 

by the detection of a functionally active de novo variant in the SCN8A channel gene in a 

child affected by epileptic encephalopathy and SUDEP.70–72 SUDEP was also reported in 

children affected by epilepsy due to variants in the KCNQ2 gene.73

Genes involved in respiration and arousal

Animal models74–77 and translational human studies78 have uncovered the critical role of 5-

hydroxytryptamine (5-HT) in respiration and arousal79 and they are discussed in detail 

elsewhere in this supplement. Mice deficient in the 5-HT2c receptor develop epileptic 

seizures and are susceptible to premature death,74 and the genetically engineered Lmx1bf/f/p 

mice depleted of all 5-HT neurons have severe apnea, hypoventilation, diminished 

hypercapnic response, compromised arousal from sleep, and premature mortality.80 There 

are known alterations in expression levels of several 5-HT receptors in the DBA/2 
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audiogenic seizure model with ictally induced respiratory arrest and sudden death.81 These 

discoveries have led to early pharmacologic intervention exploring the possible beneficial 

effect of the widely available serotonin reuptake inhibitors (SSRIs) on SUDEP risk. 

Administration of SSRI in the DBA/1 model ameliorated ictally induced respiratory arrest 

and death and the effect was age dependent.82,83 Clinical observations reflected the animal 

data, as people with epilepsy chronically exposed to SSRIs were less likely to experience 

profound oxygen desaturation with partial, but not secondarily generalized, seizures.78

Complex genetics of human SUDEP

There is growing evidence that variant functional properties along with complex genetic 

interactions influence the phenotypic expressions of cardiac arrhythmias,12,84,85 

epilepsy,52,86,87 and SUDEP.52 Although SCN8A gain-of-function mutations are implicated 

in epileptic encephalopathies and SUDEP,70,86,88 animal models carrying loss-of-function 

variants exhibit milder seizure phenotype.71,72 In addition, Kcna1 SUDEP model crossed 

with a Cacna1a absence seizure mouse has mild seizure phenotype and improved survival.89 

Furthermore, modulation of neuronal hyperexcitability and premature mortality extends 

beyond genetic interactions of the ion channel network; the deficiency of the microtubule-

binding protein tau in the Kcna1 knockout mouse not only reduced the seizure frequency 

and severity, but also improved survival.90 A human example of genomic complexity in 

SUDEP was recently illustrated by a pediatric case with DS, frequent ictal apnea, and 

suspected cardiac arrhythmias.52 Detailed genomic analysis uncovered interesting 

combinations of SNPs and copy number variants in genes expressed in both neurocardiac 

and respiratory control pathways, including SCN1A, KCNA1, RYR3, and HTR2C.

Understanding SUDEP Genetics in Populations—The Australian Experience

Tu et al.38,50 carried out a retrospective review of postmortem reports performed at a single 

forensic center between 1993 and 2009, identifying 68 cases: the cause of death was 

“SUDEP” or “possible SUDEP” in 22 and 46 cases, respectively. Postmortem blood was 

available in 48 cases, and DNA was screened for variants in the most common LQTS 
genes,38 KCNQ1, KCNH2, and SCN5A, as well in the HCN gene family.43,44,50 There was 

a KCNH2 Arg176Trp and Arg1047Leu missense variation in one and four SUDEP cases, 

respectively, a single Ala572Asp, Pro1090Leu, and Pro2006Ala missense variation in 

SCN5A in three SUDEP cases38 and nine nonsynonymous HCN genic variants.50

The Arg176Trp variant in KCNH2 is a nonconservative substitution in a highly conserved 

N-terminal region of the protein. According to bioinformatic (in silico) analysis, it is 

probably damaging. The KCNH2 176Trp allele is a common founder mutation associated 

with a prolonged QT interval in Finnish LQTS families.91–93 It is also reported in a case of 

sudden unexplained death.94 In vitro functional studies have shown that the Arg176Trp 

substitution alters ion channel function, causing accelerated channel deactivation and 

reduced potassium current density, resulting in a prolonged QT interval.92 Collectively, these 

results implicate the KCNH2 Arg176Trp variant in prolongation of the QT interval, a likely 

trigger of a fatal arrhythmia in the SUDEP case, a 35-year-old man, reportedly diagnosed 

with epilepsy 5 years prior to death who had 10 episodes requiring hospitalization; 
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neuropathology examination reported left hippocampal sclerosis. KCNH2 Arg1047Leu is a 

common variant found in 2.9% SUDEP cases (2.9%). One patient with SUDEP, a 52-year-

old woman with a history of controlled epilepsy, carried the KCNH2 Arg1047Leu 

polymorphism in addition to the rare SCN5A Ala572Asp variant that has been reported 

previously in LQTS and in a case of sudden cardiac death.95,96 Neuropathology reported 

microdysgenesis in the left hippocampus. As discussed earlier,7 it is plausible that the 

combined effect of these two protein-changing variants raised the risk of sudden death in 

this patient. SCN5A Pro2006Ala is a rare variant with a minor allele frequency (MAF) of 

0.1%, reported previously in a case of unexplained cardiac arrest and LQTS.97,98 This 

variant was found in a 43-year-old man who died of SUDEP who had nocturnal seizures. 

The SCN5A Pro1090Leu variation shows ethnically variable MAF of 0.008% in European 

and African ancestry but 2% in an Asian subpopulation. It is considered an Asian-specific 

polymorphism.99,100 This variant was found in a 23-year-old from China with a history of 

poorly controlled epilepsy. HCN2 Phe738Cys is a nonconservative substitution in the 

carboxyl-cytoplasmic tail of the HCN2 protein, predicted by in silico to be possibly 

damaging. It was detected in a 52-year-old man, a carrier of the common KCNH2 
Arg1047Leu polymorphism. The patient had infrequent seizures since the age of 16 years. 

HCN2 Pro802Ser is a nonconservative substitution in the carboxyl-cytoplasmic tail, 

predicted to be benign. It was detected in a 43-year-old man, also a carrier of the SCN5A 
Pro2006Ala variant, and who had a witnessed nocturnal seizure. HCN4 Gly973Arg is a 

nonconservative substitution found in a 44-year-old man with reportedly regular seizures 

prior to death.

Genetic analysis of the Australian SUDEP cohort supports the hypothesis that genes 

encoding K+, Na+, and Ca2+ ion channels expressed both in neuronal and/or cardiac cells are 

likely to play an important role in the predisposition of epilepsy patients to SUDEP.38,50 It 

remains to be determined whether these ion channel variants are the genetic cause in some 

SUDEP cases or an accompanying risk factor in the sudden death of patients with epilepsy. 

The variants may act in isolation or require the presence of a second genetic factor or 

environmental influence, such as uncontrolled seizures, QT-prolonging AEDs, or 

noncompliance with AED therapy, to predispose epilepsy patients to malignant arrhythmias 

and sudden death. Screening candidate genes, one at a time, limits the scope of genetic 

studies. Furthermore, although postmortem blood offers an ideal source of DNA for genetic 

studies in SUDEP, it is of finite supply, and not always available. Recent major advances in 

DNA enrichment and “next-generation” sequencing technologies have provided a new and 

powerful approach to identify mutations responsible for genetic disorders. The ability to 

enrich and sequence all of the protein coding exons (the exome) reduces the target region to 

1.5% of the genome, while retaining the sequences most likely to harbor the majority of 

variations with high penetrance.101

Genetics of SUDEP: Tissue Collection and Utilization

Genetic variation likely contributes to SUDEP risk, but it is unclear how such variation 

might best be identified; in particular what samples are needed, what methods and analyses 

might be used, and how potential genetic leads might be followed through.

Goldman et al. Page 7

Epilepsia. Author manuscript; available in PMC 2016 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA collection for genetic studies in epilepsy is well established. Worldwide, tens of 

thousands of DNA samples have now been collected, and many thousands genotyped102 or 

exome sequenced. The genetic study of SUDEP clearly provides a different level of 

challenge, as SUDEP cannot be predicted and there is no “target” population, although some 

groups of patients might be considered at greater risk. Collection in life for SUDEP studies 

is challenging, although greater SUDEP awareness103 could facilitate this. Collection after 

SUDEP is difficult to systematize. The logistic difficulties of obtaining postmortem material 

require an awareness of the need and the processes, appropriate consent, and an established 

infrastructure. Up until now, most genetic studies of SUDEP have been of single cases or 

small series. In view of this, Klassen et al.104 investigated the possibility of using other 

sources for DNA in SUDEP. They were able to extract DNA that could be used for at least 

some studies from blood spots on Guthrie cards, buccal scrapes on Guthrie cards, and from 

fingernails. In the field of oncology, it is now a well-established practice to undertake 

candidate gene or genome-wide whole exome sequencing from formalin-fixed paraffin-

embedded samples, including brain. This has opened up large archival collections for 

research.

Advancing technology now allows for genetic studies using ever-smaller samples of DNA. A 

recent pathologic study of 143 archived brain samples105 established the potential of this 

approach which in future could use prospectively collected samples from both postmortem 

and surgical cases, SUDEP and otherwise, to generate a regulated and approved resource for 

further research into, among other areas, SUDEP.

Clinical Implications

It is difficult at this time to translate genetic advances into pragmatic advice for patients, 

particularly as SUDEP tragically affects a wide range of individuals with epilepsy. Indeed 

there may be distinct separate populations at risk of SUDEP, with potentially different 

mechanisms. One group of individuals, typically young adults, with no significant prior 

known comorbidities and infrequent seizures, who die suddenly might represent a different 

population from those with severe epilepsy who manifest with frequent generalized 

convulsions. In the former group, genetic susceptibility to epilepsy may be associated with a 

genetic susceptibility to sudden cardiac death.106 In the latter group, there may be complex 

additive interactions between polygenetic factors, medication, and the consequences of 

frequent severe seizures. In SUDEP, there is currently no evidence to guide practice for 

routine genetic testing. However, with genetic screening for long-QT–associated mutations, 

once confined to the research laboratory, now clinically available as diagnostic tests,107 any 

SUDEP case should have a careful review of the family history, and any concern should 

result in a molecular genetics study.

The first priority in epilepsy practice is to ensure that patients do have epilepsy, rather than a 

cardiac disorder.108 All new epilepsy patients must undergo a careful cardiac history and a 

detailed family history, particularly asking about sudden cardiac death and unexplained 

deaths in infancy. All patients, indeed anyone who has a blackout, should have an 

electrocardiogram (Table 1). Modern automated ECG machines may help screen for cardiac 

disorders, but a cardiologist, experienced in the relevant abnormalities, must review any 
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abnormalities identified as potentially abnormal. Epilepsy patients with an abnormal or 

equivocal ECG study, or any suspicious family history, should undergo specialist cardiac 

review. A specialist cardiac review should also be arranged for any patients who report 

suspicious symptoms including exercise-related seizures, or where there is witnessed 

profound pallor during seizures. Such patients should be assessed for possible prolonged 

monitoring, ideally with an implantable event recorder (IER) (Table 1). It is likely that at 

present barriers to arranging such specialist assessments result more from lack of awareness 

among neurologists rather than from resistance from cardiology services.

Even in expert hands, however, spotting QT abnormalities is problematic, most cardiologists 

miss them,109 and IER is costly.110 It is important that all those who care for people with 

epilepsy be aware that not only might potentially life-threatening cardiac disorders mimic 

epilepsy,111 but also patients with epilepsy might be at increased risk of concurrent cardiac 

arrhythmias.

Developing the hypothesis that there might be (at least) two distinct populations within 

SUDEP cases, and considering those with frequent generalized seizures despite medication, 

the use of IER technology needs to be assessed looking for potential markers of cardiac 

instability. It has long been recognized that some patients have identifiable cardiac 

abnormalities in the interictal state,112 and during seizures,113,114 including varying degrees 

and types of heart block. In addition, such patients may have disturbances of autonomic 

function, both when untreated,115 and also possibly associated with treatment116; 

withdrawal of treatment may exacerbate these abnormalities.117 These interictal and ictal 

cardiac disturbances might be of particular significance in those with severe medically 

intractable epilepsies, and in this group, therefore, the results of prolonged cardiac 

monitoring might be used to guide drug choices, including nonepilepsy drugs, could help 

with counseling about other potentially modifiable risk factors, and might result in 

implantable devices to protect selected patients.113

These proposals represent significant changes to current routine practice, and require an 

increased awareness of the risks of SUDEP for patients. Highlighting these risks to patients 

has implications.103 Furthermore, the proposals require increased engagement among 

neurologists regarding the need for review of cardiac risk factors. An informal survey of 

United Kingdom cardiac electrophysiologists by one of the authors (PC) suggests that 

cardiologists already acknowledge the need to investigate such patients. Many young adults 

who die of SUDEP are not dissimilar to young adults who die of SCD. Increased public 

awareness of SCD has improved its prevention. It is hoped that increased public awareness 

of the risks of epilepsy might do the same for SUDEP.
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Key Points

• Evidence suggests likely genomic complexity and a degree of overlap 

among among sudden cardiac death, sudden infant death syndrome, 

and SUDEP

• In some genetic epilepsies, a mutation may also predispose to sudden 

death, whereas in acquired epilepsies, coexisting genetic variants may 

increase susceptibility

• For patients with epilepsy, a cardiac history and an electrocardiogram 

should be obtained, as well as a careful family history for sudden or 

unexplained deaths

• Awareness that life-threatening cardiac disorders can mimic epilepsy 

and that patients with epilepsy might be at increased risk of cardiac 

arrhythmias is needed

• Many challenges remain, and future progress requires collaborative 

transdisciplinary research
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Table 1

Suggested minimum cardiac assessment for individuals with seizures

All patients

 ECG with computer analysis

 Careful history of events, specifically questioning cardiac features

  Exercise-related events

  Reported profound pallor at time of seizures

  Family history for

  Sudden unexplained, or established cardiac deaths, especially <40 years age

  Sudden infant death syndrome (SIDS)

  Relative with SUDEP

If any of the above, including any uncertainty

 Consider ECG studies of first-degree relatives, with computer analysis

 Formal specialist cardiology assessment

  Consider exercise ECG and/or pharmacologic provocation

  Consider implantable event recorder

 Consider genetic referral for molecular genetics study including family members
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