118 research outputs found

    Doppler assessment of aortic stenosis: a 25-operator study demonstrating why reading the peak velocity is superior to velocity time integral

    Get PDF
    Aims Measurements with superior reproducibility are useful clinically and research purposes. Previous reproducibility studies of Doppler assessment of aortic stenosis (AS) have compared only a pair of observers and have not explored the mechanism by which disagreement between operators occurs. Using custom-designed software which stored operators’ traces, we investigated the reproducibility of peak and velocity time integral (VTI) measurements across a much larger group of operators and explored the mechanisms by which disagreement arose. Methods and results Twenty-five observers reviewed continuous wave (CW) aortic valve (AV) and pulsed wave (PW) left ventricular outflow tract (LVOT) Doppler traces from 20 sequential cases of AS in random order. Each operator unknowingly measured each peak velocity and VTI twice. VTI tracings were stored for comparison. Measuring the peak is much more reproducible than VTI for both PW (coefficient of variation 10.1 vs. 18.0%; P < 0.001) and CW traces (coefficient of variation 4.0 vs. 10.2%; P < 0.001). VTI is inferior because the steep early and late parts of the envelope are difficult to trace reproducibly. Dimensionless index improves reproducibility because operators tended to consistently over-read or under-read on LVOT and AV traces from the same patient (coefficient of variation 9.3 vs. 17.1%; P < 0.001). Conclusion It is far more reproducible to measure the peak of a Doppler trace than the VTI, a strategy that reduces measurement variance by approximately six-fold. Peak measurements are superior to VTI because tracing the steep slopes in the early and late part of the VTI envelope is difficult to achieve reproducibly

    Automated speckle tracking algorithm to aid on-axis imaging in echocardiography

    Get PDF
    Obtaining a “correct” view in echocardiography is a subjective process in which an operator attempts to obtain images conforming to consensus standard views. Real-time objective quantification of image alignment may assist less experienced operators, but no reliable index yet exists. We present a fully automated algorithm for detecting incorrect medial/lateral translation of an ultrasound probe by image analysis. The ability of the algorithm to distinguish optimal from sub-optimal four-chamber images was compared to that of specialists—the current “gold-standard.” The orientation assessments produced by the automated algorithm correlated well with consensus visual assessments of the specialists (r=0.87r=0.87) and compared favourably with the correlation between individual specialists and the consensus, 0.82±0.09. Each individual specialist’s assessments were within the consensus of other specialists, 75±14% of the time, and the algorithm’s assessments were within the consensus of specialists 85% of the time. The mean discrepancy in probe translation values between individual specialists and their consensus was 0.97±0.87  cm, and between the automated algorithm and specialists’ consensus was 0.92±0.70  cm. This technology could be incorporated into hardware to provide real-time guidance for image optimisation—a potentially valuable tool both for training and quality control

    Severe COVID-19 is associated with endothelial activation and abnormal glycosylation of von Willebrand factor in patients undergoing hemodialysis

    Get PDF
    Background: A major clinical feature of severe coronavirus diease 2019 (COVID-19) is microvascular thrombosis linked to endothelial cell activation. Consistent with this, a number of studies have shown that patients with severe COVID-19 have highly elevated plasma levels of von Willebrand Factor (VWF) that may contribute to the prothrombotic phenotype. In the current study, we investigated the extent of endothelial activation in patients receiving hemodialysis who had either mild or severe COVID-19. Methods: Plasma VWF, ADAMTS-13, angiopoietin-2 (Ang2), and syndecan-1 levels were determined by ELISA. The sialic acid content of VWF was investigated using a modified ELISA to measure elderberry bark lectin, specific for sialic acid residues, binding to VWF. Results: Patients receiving hemodialysis with severe COVID-19 had significantly higher plasma levels of VWF and lower ADAMTS-13. VWF levels peaked and were sustained during the first 10 days after positive confirmation of infection. While Ang2 trended toward being higher in severely ill patients, this did not reach significance; however, severely ill patients had significantly higher soluble syndecan-1 levels, with high levels related to risk of death. Finally, higher VWF levels in severely ill patients were correlated with lower VWF sialic acid content. Conclusions: Severe COVID-19 in patients undergoing hemodialysis is associated with both acute and sustained activation of the endothelium, leading to alteration of the VWF/ADAMTS-13 axis. Lower VWF sialic acid content represents altered VWF processing and further confirms the disturbance caused to the endothelium in COVID-19

    Cardiac Screening of Young Athletes: a Practical Approach to Sudden Cardiac Death Prevention.

    Get PDF
    PURPOSE OF REVIEW: We aim to report on the current status of cardiovascular screening of athletes worldwide and review the up-to-date evidence for its efficacy in reducing sudden cardiac death in young athletes. RECENT FINDINGS: A large proportion of sudden cardiac death in young individuals and athletes occurs during rest with sudden arrhythmic death syndrome being recognised as the leading cause. The international recommendations for ECG interpretation have reduced the false-positive ECG rate to 3% and reduced the cost of screening by 25% without compromising the sensitivity to identify serious disease. There are some quality control issues that have been recently identified including the necessity for further training to guide physicians involved in screening young athletes. Improvements in our understanding of young sudden cardiac death and ECG interpretation guideline modification to further differentiate physiological ECG patterns from those that may represent underlying disease have significantly improved the efficacy of screening to levels that may make screening more attractive and feasible to sporting organisations as a complementary strategy to increased availability of automated external defibrillators to reduce the overall burden of young sudden cardiac death

    Frame rate required for speckle tracking echocardiography: A quantitative clinical study with open-source, vendor-independent software

    Get PDF
    Background Assessing left ventricular function with speckle tracking is useful in patient diagnosis but requires a temporal resolution that can follow myocardial motion. In this study we investigated the effect of different frame rates on the accuracy of speckle tracking results, highlighting the temporal resolution where reliable results can be obtained. Material and methods 27 patients were scanned at two different frame rates at their resting heart rate. From all acquired loops, lower temporal resolution image sequences were generated by dropping frames, decreasing the frame rate by up to 10-fold. Results Tissue velocities were estimated by automated speckle tracking. Above 40 frames/s the peak velocity was reliably measured. When frame rate was lower, the inter-frame interval containing the instant of highest velocity also contained lower velocities, and therefore the average velocity in that interval was an underestimate of the clinically desired instantaneous maximum velocity. Conclusions The higher the frame rate, the more accurately maximum velocities are identified by speckle tracking, until the frame rate drops below 40 frames/s, beyond which there is little increase in peak velocity. We provide in an online supplement the vendor-independent software we used for automatic speckle-tracked velocity assessment to help others working in this field

    Anterior T-Wave Inversion in Young White Athletes and Nonathletes: Prevalance and Significance

    Get PDF
    BACKGROUND: Anterior T-wave inversion (ATWI) on electrocardiography (ECG) in young white adults raises the possibility of cardiomyopathy, specifically arrhythmogenic right ventricular cardiomyopathy (ARVC). Whereas the 2010 European consensus recommendations for ECG interpretation in young athletes state that ATWI beyond lead V1 warrants further investigation, the prevalence and significance of ATWI have never been reported in a large population of asymptomatic whites. OBJECTIVES: This study investigated the prevalence and significance of ATWI in a large cohort of young, white adults including athletes. METHODS: Individuals 16 to 35 years of age (n = 14,646), including 4,720 females (32%) and 2,958 athletes (20%), were evaluated by using a health questionnaire, physical examination, and 12-lead ECG. ATWI was defined as T-wave inversion in ≥2 contiguous anterior leads (V1 to V4). RESULTS: ATWI was detected in 338 individuals (2.3%) and was more common in women than in men (4.3% vs. 1.4%, respectively; p < 0.0001) and more common among athletes than in nonathletes (3.5% vs. 2.0%, respectively; p < 0.0001). T-wave inversion was predominantly confined to leads V1 to V2 (77%). Only 1.2% of women and 0.2% of men exhibited ATWI beyond V2. No one with ATWI fulfilled diagnostic criteria for ARVC after further evaluation. During a mean follow-up of 23.1 ± 12.2 months none of the individuals with ATWI experienced an adverse event. CONCLUSIONS: ATWI confined to leads V1 to V2 is a normal variant or physiological phenomenon in asymptomatic white individuals without a relevant family history. ATWI beyond V2 is rare, particularly in men, and may warrant investigation

    Automated multi-beat tissue Doppler echocardiography analysis using deep neural networks

    Get PDF
    Tissue Doppler imaging is an essential echocardiographic technique for the non-invasive assessment of myocardial blood velocity. Image acquisition and interpretation are performed by trained operators who visually localise landmarks representing Doppler peak velocities. Current clinical guidelines recommend averaging measurements over several heartbeats. However, this manual process is both time-consuming and disruptive to workflow. An automated system for accurate beat isolation and landmark identification would be highly desirable. A dataset of tissue Doppler images was annotated by three cardiologist experts, providing a gold standard and allowing for observer variability comparisons. Deep neural networks were trained for fully automated predictions on multiple heartbeats and tested on tissue Doppler strips of arbitrary length. Automated measurements of peak Doppler velocities show good Bland–Altman agreement (average standard deviation of 0.40 cm/s) with consensus expert values; less than the inter-observer variability (0.65 cm/s). Performance is akin to individual experts (standard deviation of 0.40 to 0.75 cm/s). Our approach allows for > 26 times as many heartbeats to be analysed, compared to a manual approach. The proposed automated models can accurately and reliably make measurements on tissue Doppler images spanning several heartbeats, with performance indistinguishable from that of human experts, but with significantly shorter processing time

    Differentiation between athlete’s heart and dilated cardiomyopathy in athletic individuals

    Get PDF
    Background: Distinguishing early dilated cardiomyopathy (DCM) from physiological left ventricular (LV) dilatation with mildly reduced LV ejection fraction (‘grey-zone’) is challenging. We evaluated the role of a cascade of investigations to differentiate these two entities. Methods and Results: Thirty-five asymptomatic active males with DCM, 25 male athletes in the ‘grey-zone’ and 24 male athlete controls with normal LV ejection fraction were investigated with NT-proBNP, electrocardiography (ECG) and exercise echocardiography. ‘Grey-zone’ athletes and DCM patients underwent cardiovascular magnetic resonance and Holter monitoring. Larger LV cavity dimensions and lower LV ejection fraction were the only differences between control and ‘grey-zone’ athletes. None of the ‘grey-zone’ athletes had an abnormal NT-proBNP, increased ectopic burden/complex arrhythmias or pathological late gadolinium enhancement. These features were absent in 71%, 71% and 50% of DCM patients respectively. 95% of ‘grey-zone’ athletes and 60% DCM patients had a normal ECG. During exercise echocardiography, 96% of the ‘grey-zone’ athletes increased LV ejection fraction by >11% from baseline to peak exercise compared with 23% DCM patients. Peak LV ejection fraction was >63% in 92% ‘grey-zone’ athletes compared with 17% DCM patients. Failure to increase LV ejection fraction >11% from baseline to peak exercise or achieve a peak LV ejection fraction >63% had a sensitivity of 77% and 83% respectively and specificity of 96% and 92% respectively for predicting DCM. Conclusion: Comprehensive assessment using a cascade of routine investigations revealed that exercise stress echocardiography has the greatest discriminatory value in differentiating between ‘grey-zone’ athletes and asymptomatic DCM patients
    corecore