6,861 research outputs found

    Supersonic unstalled flutter

    Get PDF
    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models

    Maternal age, development time, position effect variegation in Drosophila melanogaster

    Get PDF
    In Drosophila expression of position-effect variegation is enhanced by culturing flies at low temperatures. It is demonstrated that this effect may not be solely temperature dependent. Maternal age influences offspring development times. Futhermore, at a given temperature, the longer a fly takes to develop, the more likely is it to exhibit position-effect variegation.Chez la Drosophile, l’expression de la diversité de « l’effet position est favorisée lorsque les mouches se développent sous des températures basses. Il a été démontré que cet effet n’est pas uniquement dépendant de la température. L’âge maternel influence la durée de développement des descendants. De plus, pour une température donnée, il semble que plus la durée de développement est longue, plus l’expression de « l’effet position » est diversifiée

    2010 ACVIM Small Animal Consensus Statement on Leptospirosis: Diagnosis, Epidemiology, Treatment, and Prevention

    Get PDF
    This report offers a consensus opinion on the diagnosis, epidemiology, treatment, and prevention of leptospirosis in dogs, an important zoonosis. Clinical signs of leptospirosis in dogs relate to development of renal disease, hepatic disease, uveitis, and pulmonary hemorrhage. Disease may follow periods of high rainfall, and can occur in dogs roaming in proximity to water sources, farm animals, or wildlife, or dogs residing in suburban environments. Diagnosis is based on acute and convalescent phase antibody titers by the microscopic agglutination test (MAT), with or without use of polymerase chain reaction assays. There is considerable interlaboratory variation in MAT results, and the MAT does not accurately predict the infecting serogroup. The recommended treatment for optimal clearance of the organism from renal tubules is doxycycline, 5 mg/kg PO q12h, for 14 days. Annual vaccination can prevent leptospirosis caused by serovars included in the vaccine and is recommended for dogs at risk of infection

    Structuring and support by Alfven waves around prestellar cores

    Full text link
    Observations of molecular clouds show the existence of starless, dense cores, threaded by magnetic fields. Observed line widths indicate these dense condensates to be embedded in a supersonically turbulent environment. Under these conditions, the generation of magnetic waves is inevitable. In this paper, we study the structure and support of a 1D plane-parallel, self-gravitating slab, as a monochromatic, circularly polarized Alfven wave is injected in its central plane. Dimensional analysis shows that the solution must depend on three dimensionless parameters. To study the nonlinear, turbulent evolution of such a slab, we use 1D high resolution numerical simulations. For a parameter range inspired by molecular cloud observations, we find the following. 1) A single source of energy injection is sufficient to force persistent supersonic turbulence over several hydrostatic scale heights. 2) The time averaged spatial extension of the slab is comparable to the extension of the stationary, analytical WKB solution. Deviations, as well as the density substructure of the slab, depend on the wave-length of the injected wave. 3) Energy losses are dominated by loss of Poynting-flux and increase with increasing plasma beta. 4) Good spatial resolution is mandatory, making similar simulations in 3D currently prohibitively expensive.Comment: 13 pages, 8 figures, accepted for publication in A&A. The manuscript with full color, high-resolution, figures can be downloaded from http://www.astro.phys.ethz.ch/papers/folini/folini_p_nf.htm

    Nonlinear Dynamics of the Perceived Pitch of Complex Sounds

    Get PDF
    We apply results from nonlinear dynamics to an old problem in acoustical physics: the mechanism of the perception of the pitch of sounds, especially the sounds known as complex tones that are important for music and speech intelligibility

    Importance Sampling in Rigid Body Diffusion Monte Carlo

    Get PDF
    We present an algorithm for rigid body diffusion Monte Carlo with importance sampling, which is based on a rigorous short-time expansion of the Green's function for rotational motion in three dimensions. We show that this short-time approximation provides correct sampling of the angular degrees of freedom, and provides a general way to incorporate importance sampling for all degrees of freedom. The full importance sampling algorithm significantly improves both calculational efficiency and accuracy of ground state properties, and allows rotational and bending excitations in molecular van der Waals clusters to be studied directly.Comment: Accepted for publication in Computer Physics Communication

    Extreme infrared variables from UKIDSS-I. A concentration in star-forming regions

    Get PDF
    We present initial results of the first panoramic search for high-amplitude near-infrared variability in theGalactic plane.We analyse the widely separated two-epoch K-band photometry in the fifth and seventh data releases of the UKIDSS Galactic plane survey.We find 45 stars with δK > 1 mag, including two previously known OH/IR stars and a Nova. Even though the midplane is not yet included in the data set, we find the majority (66 per cent) of our sample to be within known star-forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (12 stars). Sources in SFRs show spectral energy distributions that support classification as young stellar objects (YSOs). This indicates that YSOs dominate the Galactic population of high-amplitude infrared variable stars at low luminosities and therefore likely dominate the total high-amplitude population. Spectroscopic follow up of the DR5 sample shows at least four stars with clear characteristics of eruptive premain- sequence variables, two of which are deeply embedded. Our results support the recent concept of eruptive variability comprising a continuum of outburst events with different timescales and luminosities, but triggered by a similar physical mechanism involving unsteady accretion. Also, we find what appears to be one of the most variable classical Be stars. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

    A Moving Boundary Flux Stabilization Method for Cartesian Cut-Cell Grids using Directional Operator Splitting

    Full text link
    An explicit moving boundary method for the numerical solution of time-dependent hyperbolic conservation laws on grids produced by the intersection of complex geometries with a regular Cartesian grid is presented. As it employs directional operator splitting, implementation of the scheme is rather straightforward. Extending the method for static walls from Klein et al., Phil. Trans. Roy. Soc., A367, no. 1907, 4559-4575 (2009), the scheme calculates fluxes needed for a conservative update of the near-wall cut-cells as linear combinations of standard fluxes from a one-dimensional extended stencil. Here the standard fluxes are those obtained without regard to the small sub-cell problem, and the linear combination weights involve detailed information regarding the cut-cell geometry. This linear combination of standard fluxes stabilizes the updates such that the time-step yielding marginal stability for arbitrarily small cut-cells is of the same order as that for regular cells. Moreover, it renders the approach compatible with a wide range of existing numerical flux-approximation methods. The scheme is extended here to time dependent rigid boundaries by reformulating the linear combination weights of the stabilizing flux stencil to account for the time dependence of cut-cell volume and interface area fractions. The two-dimensional tests discussed include advection in a channel oriented at an oblique angle to the Cartesian computational mesh, cylinders with circular and triangular cross-section passing through a stationary shock wave, a piston moving through an open-ended shock tube, and the flow around an oscillating NACA 0012 aerofoil profile.Comment: 30 pages, 27 figures, 3 table

    Real-time evolution for weak interaction quenches in quantum systems

    Full text link
    Motivated by recent experiments in ultracold atomic gases that explore the nonequilibrium dynamics of interacting quantum many-body systems, we investigate the nonequilibrium properties of a Fermi liquid. We apply an interaction quench within the Fermi liquid phase of the Hubbard model by switching on a weak interaction suddenly; then we follow the real-time dynamics of the momentum distribution by a systematic expansion in the interaction strength based on the flow equation method. In this paper we derive our main results, namely the applicability of a quasiparticle description, the observation of a new type of quasi-stationary nonequilibrium Fermi liquid like state and a delayed thermalization of the momentum distribution. We explain the physical origin of the delayed relaxation as a consequence of phase space constraints in fermionic many-body systems. This brings about a close relation to similar behavior of one-particle systems which we illustrate by a discussion of the squeezed oscillator; we generalize to an extended class of systems with discrete energy spectra and point out the generic character of the nonequilibrium Fermi liquid results for weak interaction quenches. Both for discrete and continuous systems we observe that particular nonequilibrium expectation values are twice as large as their corresponding analogues in equilibrium. For a Fermi liquid, this shows up as an increased correlation-induced reduction of the quasiparticle residue in nonequilibrium.Comment: 54 page
    corecore