161 research outputs found

    The Manipulation of Mercy: Sanctuary in mid to late medieval England and its relationship with the people

    Get PDF
    In scholarly debate, the beneficiaries of the institution of sanctuary in medieval England are usually identified as being the Church and the Crown. To the Church, governance over sanctuary provided them with an avenue for financial profit and intervention in legal affairs that otherwise belonged to the king's jurisdiction. However, for the King, simply allowing sanctuary to exist was a display of his sovereignty over even the Church, as well as a testament to his royal mercy. Sanctuary only existed because the king allowed it to exist. While it is true that this institution was vital to both the Church and the Crown, a third party has repeatedly been overlooked when analyzing the beneficiaries of sanctuary. In this essay, I will argue that a third party – the people living in England – also relied upon and utilized sanctuary for a diverse and unexpected number of opportunities and protections that it offered, as well as played key roles in the very establishment and operation of such sites. The jurisdiction of the Church was sought out by people of diverse and different backgrounds, for a myriad of reasons: felons, debtors, aristocrats, foreign businessmen, and even members of the royal family took advantage of the unique privileges and opportunities available through sanctuary.No embargoAcademic Major: Histor

    The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA

    Get PDF
    Alterations in genetic programs required for terminal myeloid differentiation and aberrant proliferation characterize acute myeloid leukemia (AML) cells. Here, we identify the host transcript of miR-223, linc-223, as a novel functional long non-coding RNA (lncRNA) in AML. We show that from the primary nuclear transcript, the alternative production of miR-223 and linc-223 is finely regulated during monocytic differentiation. Moreover, linc-223 expression inhibits cell cycle progression and promotes monocytic differentiation of AML cells. We also demonstrate that endogenous linc-223 localizes in the cytoplasm and acts as a competing endogenous RNA for miR-125-5p, an oncogenic microRNA in leukemia. In particular, we show that linc-223 directly binds to miR-125-5p and that its knockdown increases the repressing activity of miR-125-5p resulting in the downregulation of its target interferon regulatory factor 4 (IRF4), which it was previously shown to inhibit the oncogenic activity of miR-125-5p in vivo. Furthermore, data from primary AML samples show significant downregulation of linc-223 in different AML subtypes. Therein, these findings indicate that the newly identified lncRNA linc-223 may have an important role in myeloid differentiation and leukemogenesis, at least in part, by cross-talking with IRF4 mRNA

    Lymphoid EVA1 Expression Is Required for DN1-DN3 Thymocytes Transition

    Get PDF
    Background: Thymus organogenesis and T lymphocyte development are accomplished together during fetal life. Proper development and maintenance of thymus architecture depend on signals generated by a sustained crosstalk between developing thymocytes and stromal elements. Any maturation impairment occurring in either cellular component leads to an aberrant thymic development. Gene expression occurring during T lymphocyte differentiation must be coordinated in a spatio-temporal fashion; one way in which this is achieved is through the regulation by cell-cell adhesion and interactions. Principal Findings: We examined the role played by Epithelial V-like Antigen 1 (EVA1), an Ig adhesion molecule expressed on thymus epithelial cells (TEC) and immature thymocytes, in T cell development by employing RNA interference in vitro and in vivo models. Fetal liver derived haematopoietic progenitors depleted of Eva1, displayed a delayed DN1-DN3 transition and failed to generate CD4CD8 double positive T cells in OP9-DL1 coculture system. In addition, we could observe a coordinated Eva1 up-regulation in stromal and haematopoietic cells in coculture control experiments, suggesting a possible EVA1 involvement in TEC-haematopoietic cells crosstalk mechanisms. Similarly, Rag2-cc double knock out mice, transplanted with Eva1 depleted haematopoietic progenitors displayed a 10-fold reduction in thymus reconstitution and a time delayed thymocytes maturation compared to controls. Conclusions: Our findings show that modulation of Eva1 expression in thymocytes is crucial for lymphocyte physiological developmental progression and stromal differentiation

    Page curves and typical entanglement in linear optics

    Full text link
    Bosonic Gaussian states are a special class of quantum states in an infinite dimensional Hilbert space that are relevant to universal continuous-variable quantum computation as well as to near-term quantum sampling tasks such as Gaussian Boson Sampling. In this work, we study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary. We first derive formulas that are asymptotically exact in the number of modes for the R\'enyi-2 Page curve (the average R\'enyi-2 entropy of a subsystem of a pure bosonic Gaussian state) and the corresponding Page correction (the average information of the subsystem) in certain squeezing regimes. We then prove various results on the typicality of entanglement as measured by the R\'enyi-2 entropy by studying its variance. Using the aforementioned results for the R\'enyi-2 entropy, we upper and lower bound the von Neumann entropy Page curve and prove certain regimes of entanglement typicality as measured by the von Neumann entropy. Our main proofs make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries. In this light, we propose future research directions where this symmetry might also be exploited. We conclude by discussing potential applications of our results and their generalizations to Gaussian Boson Sampling and to illuminating the relationship between entanglement and computational complexity.Comment: 29 pages; 2 figures. Version 2: small updates to match journal versio

    Expression of ID4 protein in breast cancer cells induces reprogramming of tumour-associated macrophages

    Get PDF
    Background: As crucial regulators of the immune response against pathogens, macrophages have been extensively shown also to be important players in several diseases, including cancer. Specifically, breast cancer macrophages tightly control the angiogenic switch and progression to malignancy. ID4, a member of the ID (inhibitors of differentiation) family of proteins, is associated with a stem-like phenotype and poor prognosis in basal-like breast cancer. Moreover, ID4 favours angiogenesis by enhancing the expression of pro-angiogenic cytokines interleukin-8, CXCL1 and vascular endothelial growth factor. In the present study, we investigated whether ID4 protein exerts its pro-angiogenic function while also modulating the activity of tumour-associated macrophages in breast cancer. Methods: We performed IHC analysis of ID4 protein and macrophage marker CD68 in a triple-negative breast cancer series. Next, we used cell migration assays to evaluate the effect of ID4 expression modulation in breast cancer cells on the motility of co-cultured macrophages. The analysis of breast cancer gene expression data repositories allowed us to evaluate the ability of ID4 to predict survival in subsets of tumours showing high or low macrophage infiltration. By culturing macrophages in conditioned media obtained from breast cancer cells in which ID4 expression was modulated by overexpression or depletion, we identified changes in the expression of ID4-dependent angiogenesis-related transcripts and microRNAs (miRNAs, miRs) in macrophages by RT-qPCR. Results: We determined that ID4 and macrophage marker CD68 protein expression were significantly associated in a series of triple-negative breast tumours. Interestingly, ID4 messenger RNA (mRNA) levels robustly predicted survival, specifically in the subset of tumours showing high macrophage infiltration. In vitro and in vivo migration assays demonstrated that expression of ID4 in breast cancer cells stimulates macrophage motility. At the molecular level, ID4 protein expression in breast cancer cells controls, through paracrine signalling, the activation of an angiogenic programme in macrophages. This programme includes both the increase of angiogenesis-related mRNAs and the decrease of members of the anti-angiogenic miR-15b/107 group. Intriguingly, these miRNAs control the expression of the cytokine granulin, whose enhanced expression in macrophages confers increased angiogenic potential. Conclusions: These results uncover a key role for ID4 in dictating the behaviour of tumour-associated macrophages in breast cancer

    Paracrine signaling from breast cancer cells causes activation of ID4 expression in tumor-associated macrophages

    Get PDF
    Background: Tumor-associated macrophages (TAMs) constitute a major portion of the leukocyte infiltrate found in breast cancer (BC). BC cells may reprogram TAMs in a pro-angiogenic and immunosuppressive sense. We previously showed that high expression of the ID4 protein in triple-negative BC cells leads to the induction of a proangiogenic program in TAMs also through the downregulation of miR-107. Here, we investigated the expression and function of the ID4 protein in TAMs. Methods: Human macrophages obtained from peripheral blood-derived monocytes (PBDM) and mouse RAW264.7 cells were used as macrophage experimental systems. ID4-correlated mRNAs of the TCGA and E-GEOD-18295 datasets were analyzed. Results: We observed that BC cells determine a paracrine induction of ID4 expression and activation of the ID4 promoter in neighboring macrophages. Interestingly, ID4 expression is higher in macrophages associated with invasive tumor cells compared to general TAMs, and ID4-correlated mRNAs are involved in various pathways that were previously reported as relevant for TAM functions. Selective depletion of ID4 expression in macrophages enabled validation of the ability of ID4 to control the expression of YAP1 and of its downstream targets CTGF and CYR61. Conclusion: Collectively, our results show that activation of ID4 expression in TAMs is observed as a consequence of BC cell paracrine activity and could participate in macrophage reprogramming in BC
    • …
    corecore