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SUPERSONIC UNSTALLED FLUTTER
by J. J. Adamczyk, M. E. Goldstein, and M. J. Hartmann

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

Recently two flutter analyses have been developed at NASA Lewis Research
Center to predict the onset of supersonic unstalled flutter of a cascade of two-
dimensional airfoils. The first of these analyzes the onset of supersonic flutter
at low levels of aerodynamic loading (i.e., backpressure), while the second
examines the occurrence of supersonic flutter at moderate levels of aerodynamic
loading. Both of these analyses are based on the linearized unsteady inviscid
equations of gas dynamics to model the flow ficld surrounding the cascade. The
details of the development of the solution to cach of these models have been pub-
lished. The objective of the present paper i1s to utilize these analyses in a para-
metric study to show the effects of cascade geometry, inlet Mach number, and
backpressure on the onset of single and multi degree of freedom unstalled super-
sonic flutter. Several of the results from this study are correlated against experi-
mental qualitative observation to validate the models.
INTRODUCTION

The problem of flutter has long plagued the development of high speed com-
pressor fan stages. The solution to this problem is often costly both in terms of
time and money. For this reason engine manufacturers as well as government
agencies are currently supporting numerous research programs in an attempt to
better define regions of flutter instability and solutions to the problem. To date
their research activities have uncovered two regions of the operating map of fan
stages where flutter can be encountered at high speeds. These regions are shown

schematically on the performance map of a typical high speed fan stage in figure 1.
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Region 1, the zone of moderate to high backpressure supersonic flutter can extend
from the stall line of the fan down to its operating line. Experimental evidence of
this flutter mode is presented in reference 1.

Region 1I, the zone of low backpressure supersonic flutter can extend from
wide open discharge to slightly below the operating line of the stage. Numerous
analytical as well as experimental papers have appeared in the open literature
which document the existence of this flutter mode (see refs. 2 to 4). Recently
NASA Lewis Research Center has developed analytical analyses for both of these
flutter zones. In reference 5 an analyses is developed for the region of moderate
to high backpressure {lutter, while reference 6 deals with the problem of low
backpressure supersonic flutter. Both of these analyses are based on the linear-
ized unsteady inviscid two-dimensional equations of gas dynamics to describe tae
flow field surrounding an infinite cascade of oscillating thin airfoils in a supersonic
stream. The details of the mathematical development of these models will not be
presented in the present paper. The objective of the present paper is to utilize
these analyses in a parametric study to show the effects of cascade geometry, inlet
Mach number, reduced frequency, and backpressure on supersonic flutter. Several
of the results from this study are correlated against experimental gualitative obser-
vation to validate the models.

MODE L FORMULATION

The present analyses represents an incremental annulus of a fan stage as an

infinite two-dimensional cascade of thin airfoils. In both analyses the steady

relative flow approaching the cascade is assumed to be supersonic, with a subsonic

axial velocity component, and satisfies the Kantrowitz unique incidence relationship.

This flow configuration causes the weak oblique leading edge shock wave to propa-
gate upstream of the cascade. At moderate to high pressures it is assumed that the
steady pressure rise across the cascade is produced by a system of normal shock
waves lying within the cascade passages. Downstream of the shock waves the

steady flow is uniform and subsonic. Figure 2 shows a sketch of this steady flow




configuration.  As the operating point of the fan at high speeds is moved towa vds
wide open discharge, the system of nearly normal in passage shock waves in the
tip region is transformed into a series of weak obligue shock waves (see fig, 2).
The flow downstream of these waves is supersonic,  Since these waves are weak
and the blade sections are thin the steady flow deviates only slightly from a uniform
flow at wide open discharge. In both analyses it s assumed that the blade motion
results in a small perturbation to a steady two-dimensional base tlow solution. At
moderate to high backpressurve the base tlow, as described above, has a normal
shock within the cascade passage with a untform stream approaching and leaving
the shock. At wide open discharpe the base tlow s assumed to be a uniform
stream.  This assumption according to linear theory uncouples the unsteady tlow
problem trom its steady state counterpart. I'he motion of the airfoils in both
analyses is restricted to simple harmonie motion in time, at a constant wmterblade
phasce angle between adjacent airtoils. The poverning equations cmployed in the
analyses are the linearized unsteady two-dimensional mviscid equations for a non-
conducting gas.  The change of the unsteady tlow varables across the in passage
shock wave are governed by the tirst ovder perturbed Rankine-Hugoniot shock
relationships. The solution to both problems was obtained by analytieal means
the details of which can be found in references o and 6. These solutions resulted
in accurate and officient computational algorvithms for computing the unsteady
acrody namic loading mdaced by the cascade motion, mcluding the hinating case ot
a free stream Mach number ot 1.
PARAMETRIC STUDY

Fhe work done by the gas stream on the cascade over a eyele of motion 1s 4
direct measurement of the susceptibility of the cascade to tlutter 1 the sign ot
the work is negative, the cascade is doig work on the pas stream., Under these
conditions any small unsupported motion mparted to the cascade will decay i time,
hence che system s stable (i however, the sign ol the work s positive the pas

stream is doing work on the cascade . U this work is not dissipated by the internal
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mechanical damping any small unsupported motion imparted to the cascade will

grow in time, causing the system to fail. g

For a single degree of freedom pitching or plunging motion the nondimensional

work done by the gas stream on an airfoil in the cascade is (see ref, 7)

W = a mim{ Cy} (1) '
for pitching motion and

W = honlm{CL} 2)

for plunging motion, where the symbol Im| | denotes the imaginary part of the {

bracketed quantity. The variables appearing in these two equations are Cl\l’ C

i

L’
o o and ho‘ which are the complex moment coefficient about the pitching axes,

the complex lift coetticient, the amplitude of the pitching oscillation, and the
amplitude of the plunging oscillation, respectively. There will be a tendency

for single degree of freedom flutter to occur in either the pitching or plunging

mode whenever the imaginary part of the complex moment or lift coefficient
becomes positive.  FFor two-degree of freedom coupled flutter the nondimensional
work done by the gas stream on an airfoil in the cascade is

= -7 sin y Real{ CM} FhomIm{C b+ a7 cos y Im{ Cy,f (3)

where the symbol Real] | denotes the real part of the complex bracketed quantity
and 7y is the phase angle at an instant in time between the pitehing and plunging
motion of an airfoil. Unlike single degree of flutter whose onset is independent of
the amplitude of the airfoil motion the onset of coupled flutter as shown by equa-
tion (3) is strongly dependent on the ratio of the pitch to plunge amplitudes and their
associated phase shift vy,

Computations were performed based on the theory of references 5 and 6 to
determine the effect of backpressure, inlet Mach number, reduced trequency,
cascade solidity, and stagger angle on the nondimensional aerodynamic work
for single degree of freedom pitching and plunging motion and for coupled pitching
and plunging motion. These results are shown plotted as a function of the phase

angle between two adjacent airfoils (i.¢., interblade phase angle) at all times,
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SINGLE DEGREE OF FREEDOM FLUTTER

The geometry of the cascade assumed in this study is, solidity 1.3, stagger
angle 60° unless otherwise noted. Pitching axis location is assumed to lie at mid-
chord. Figures 3 to 7 show graphs of the work per cycle for a cascade undergoing
simple harmonic pitching motion at moderate to high backpressures. The in pas-
sage normal shock wave is assumed to lie slightly upstream of the passage en-
trance. Results are shown in figures 3 to 5 for inlet Mach numbers of 1.2, 1.4,
and 1.6, respectively. The parameter varied in each of these figures is the
reduced frequency based on semichord from a value ¢f 0.25 to 1.0. Recalling
that positive work per cycle implies instability provided the effect of mechanical
damping is neglected, figures 3 to 5 show that for Mach numbers between 1.2 and
1.6 single degree of freedom pitching (i.e., torsional) flutter can exist for reduced
frequencies less than 0.25 at moderate to high backpressures. At Mach numbers
above 1.2 this mode of flutter exists for reduced frequencies above 0.25 but ceases
to exist at reduced frequencies greater than 0.5. The effects of cascade solidity
and stagger angle on torsional flutter at moderate to high backpressures are shown
in figures 6 and 7. These results were computed based on solidities of 1.2 and 1.4
and stagger angles of 50° and 70°. The reduced frequency and inlet Mach number
were held constant at 0,5 and 1.4, Although figures 6 and 7 show no region of
instability they do show that reducing the solidity and decreasing the stagger angle
have a slight stabilizing effect on single degree of freedom torsional flutter at
moderate to high backpressures.

The nondimensional work per cycle for a cascade pitching about mid-chord at
low backpressures is shown in figures 8 to 12. The cascade geometry assumed
in the computation of these results is identical to that assumed for the previous

results unless otherwise noted. Figures 8 to 10 show the eftfect of Mach number

and reduced frequency. From these results it appears that single degree of freedom
torsional flutter will not exist at low backpressures at reduced frequencies in excess

of 0.50. This reduced frequency limit is greater than the corresponding limit



established from the previous set of results for moderate to high backpressure
cascade operation. This implies that a cascade operating with a finite backpressure
across it will be less susceptible to torsional flutter than a cascade operating at
low back pressures. This backpressurizing phenomenon has been observed in fans
where it causes the torsional flutter boundary to bend back as the pressure ratio
across the fan is raised (see fig. 1). The effects of cascade solidity and stagger
angle on the work per cycle for torsional oscillation at low backpressures are
shown in figures 11 and 12, The values of the parameters used in these computa-
tions are identical to those used previously in computing the results in figures 6
and 7. These results like their counterparts for moderate to high backpressure
show that reducing the stagger angle and reducing the cascade solidity have a
slight stabilizing effect on torsional flutter at low backpressures,

The work per cycle for a cascade undergoing simple harmonic plunging motion
at moderate to high backpressures is shown in figures 13 to 17. Figures 13 to 15
show the effects of reduced frequency and Mach number. These results imply that
the work per cycle will remain negative over all values of interblade phase angle
provided the reduced frequency is slightly greater than 0.20 for inlet Mach numbers
up to 1.6. As the inlet Mach number is reduced from 1.6 the transition reduced
frequency decreases to approximately 0.15 at Mach number 1.2. The effects of
solidity and stagger angle on the work per cycle are shown in figures 16 and 17.
Increasing the solidity slightly enhances the stability of the system, while increas-
ing the stagger has a destabilizing effect.

The results for plunging motion at low backpressure are not presented because
they showed that the work per cycle always remained negative. Thus the theory of
reference 6 predicts that flutter in a puce plurging mode cannot occur at low back-
pressures. However, the results presented in figures 13 to 17 which were based
on the theory of reference 5 show that single degree of freedom bending flutter can
occur at moderate to high backpressures. Thus it can be concluded that back-
pressuring tends to induce bending flutter. Experimental evidence to support this

observation is provided in reference 1.



COUPLED FLUTTER

Carta (ref. 8) showed the existence of coupled flutter in compressor rotors.
Unlike coupled flutter in fixed wing aircraft where the coupling between the bend-
ing and torsional mode is due to the aerodynamic forces, the coupling in com-
pressor rotors is caused by mechanical restraining forces associated with part
span shrouds and flexible disks. Carta in his analysis assumed the motion of

the rotor disk to be
» (wt_ﬁr_ﬂ z)
N p

where A is the amplitude of the motion, t is time, w is the circular frequency,

S = Ae

n is an integer, N is the number of rotor blades, p is the pitch chord ratio, and
r the peripherial distance around the wheel. If the rotor blades are rigidly fixed
to the deforming disk the plunging and pitching amplitude of a blade section at a

given radial location are

h0 =A cos 0
a, _2mA ei7r/2
Np

respectively, where ¢ is the local stagger angle of the blade sections. The non-
dimensional aerodynamic work per cycle associated with this motion is
W = Amcos 6{1m CL ;.. . Real CM}

pN cos 6
where the integer n can take on both positive and negative values corresponding to
either a backward or forward traveling wave along the disk rim. The lift and mo-

ment coefficients appearing in this equation are to be evaluated at an interblade phase

angle of
o= 2m
N

Computations were performed to assess the influence of the twist bend coupling

ratio
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- 2m

Np cos 6

inlet Mach number and reduced frequency on the aerodynamic work per cycle at
low and high backpressures. The results for moderate to high backpressures
are shown plotted as a function of the harmonic number n for specified values
of reduced frequency and inlet Mach number in figures 18 to 20. The cascade
solidity and stagger angle are 1.3 and 6()0, respectively. These results show
that for n negative and large the gas stream is supplying energy to the cascade,
while for positive values of n the energy flow is generally from the cascade to
the gas stream. Hence, the vibrational waves traveling in the direction of rota-
tion appear to be less stable than thosc traveling in the opposite direction. For
small absolute values of n and for reduced frequencies greater than 0.25 the
work per cycle remains negative for Mach numbers greater than 1.2. Since the
twist bend coupling parameter ¢ is directly proportional to n it is seen that an
effective means of suppressing coupled flutter is by mechanically controlling the
ratio of twist to bend in the lower order vibrational modes. These results also
show that increasing reduced frequency has a stabilizing effect on coupled flutter
but not to the extent it does for single degree of freedom flutter.

The effect of lowering the backpressure across the cascade on the work per
cycle is shown in figures 21 to 23. The trends of these results are quite similar
to those for moderate to high backpressure. Increasing reduced frequency and
limiting the ratio of twist bend coupling suppresses coupled flutter at low back-
pressure, as it did at high to moderate backpressures. From these results it
appears that proper choice of these two parameters can prevent coupled flutter
from occurring over the entire high speed operating angle of a fan or compressor
stage.

CONCLUSIONS
The results of numerous calculation based on the theory of references 5 and 6

has been presented to show the effect of inlet Mach number, cascade geometry,



reduced frequency, and backpressure on the susceptibility of a cascade to single-
and multi-degree of freedom flutter. It was shown that increasing reduced fre-
quency and backpressure had a stabilizing effect on single degree of freedom
torsional flutter. It was also shown that single degree of freedom bending flutter
could occur at moderate to high backpressure if the reduced frequency was below
0.25. For a coupled vibrational mode it was shown that the occurrence of flutter
could be prevented over the entire high speed operating range of a fan stage by
mechanically controlling the ratio of twist bend coupling and reduced frequency.
These stability trends are consistent with experimental rig observations.
A detailed experimental verification of the theories of references 5 and 6
in necessary. One suitable approach would be to utilize a high speed wind tunnel
with a linear cascade in which the airfoils are driven in a prescribed mode and
operated over a range of back pressures. Measured surface pressure distribu-
tions could then Lie correlated against predicted results to establish the model
validity or the need for additional model refinements,
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Figure 3. - Work per cycle for pitching motion ahout mid-
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Figure 14. - Work per cycle for plunging motion at moder-
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Figure 22. - Work per cycle for coupled motion at low back-
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Figure 23. - Work per cycle for coupled motion at low back-
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