99 research outputs found

    Personality Traits Predict Hierarchy Rank in Male Rainbowfish Social Groups

    Get PDF
    Personality traits are becoming increasingly important in explaining adaptive individual differences in animal behaviour and probably represent a leading edge of the evolutionary process. Despite the newfound interest in animal personality among behavioural ecologists, fewstudies have investigated the link between personality traits and fitness measures. We examined this link using male rainbowfish, Melanotaenia duboulayi, as a model species and found that a range of personality traits (aggression, activity and boldness) covaried with a male’s position in a hierarchy, which is directly related to reproductive success in this and many other species. Dominant fish were more aggressive, active, bold and also significantly larger than subordinate fish. Moreover, we found strong correlations between activity levels and boldness suggesting that selection may act on a suite of traits in concert (sensu behavioural syndromes). When taken together with previous research, our results suggest that the activityeboldness syndrome is likely to be domain specific. We suggest that multiple trait correlations may be generated by high levels of competition (e.g. sexual selection) in addition to predation pressure as identified by previous studies

    La ressource ANNODIS multi-Ă©chelle : guide d'annotation et bonus

    Get PDF
    Cet article raconte l'histoire de la campagne d'annotation ANNODIS en structures multi-échelles. Il fournit : - un historique des différentes étapes de construction du guide d'annotation, - le guide d'annotation donné aux annotateurs, - les mesures d'accord inter-annotateurs, - la liste des post-traitements réalisés avant diffusion de la ressource, - la liste des décisions prises pour l'arbitrage des textes multi-annotés et - ce que l'on a appelé un "guide si" qui correspond au guide que l'on proposerait une fois l'expérience ANNODIS derriÚre nous

    Global change in the trophic functioning of marine food webs

    Get PDF
    The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive

    Integrated ecological–economic fisheries models—Evaluation, review and challenges for implementation

    Get PDF
    Marine ecosystems evolve under many interconnected and area-specific pressures. To fulfil society's intensifying and diversifying needs while ensuring ecologically sustainable development, more effective marine spatial planning and broader-scope management of marine resources is necessary. Integrated ecological-economic fisheries models (IEEFMs) of marine systems are needed to evaluate impacts and sustainability of potential management actions and understand, and anticipate ecological, economic and social dynamics at a range of scales from local to national and regional. To make these models most effective, it is important to determine how model characteristics and methods of communicating results influence the model implementation, the nature of the advice that can be provided and the impact on decisions taken by managers. This article presents a global review and comparative evaluation of 35 IEEFMs applied to marine fisheries and marine ecosystem resources to identify the characteristics that determine their usefulness, effectiveness and implementation. The focus is on fully integrated models that allow for feedbacks between ecological and human processes although not all the models reviewed achieve that. Modellers must invest more time to make models user friendly and to participate in management fora where models and model results can be explained and discussed. Such involvement is beneficial to all parties, leading to improvement of mo-dels and more effective implementation of advice, but demands substantial resources which must be built into the governance process. It takes time to develop effective processes for using IEEFMs requiring a long-term commitment to integrating multidisciplinary modelling advice into management decision-making.</p

    Social equity is key to sustainable ocean governance

    Get PDF
    Calls to address social equity in ocean governance are expanding. Yet ‘equity’ is seldom clearly defined. Here we present a framework to support contextually-informed assessment of equity in ocean governance. Guiding questions include: (1) Where and (2) Why is equity being examined? (3) Equity for or amongst Whom? (4) What is being distributed? (5) When is equity considered? And (6) How do governance structures impact equity? The framework supports consistent operationalization of equity, challenges oversimplification, and allows evaluation of progress. It is a step toward securing the equitable ocean governance already reflected in national and international commitments

    Integrating Marine Protected Areas in fisheries management systems: some criteria for ecological efficiency

    Full text link
    Through a review of the scientific literature and a more in-depth qualitative meta-analysis of 16 case studies distributed worldwide, this article aims to study impacts of MPAs on marine living resources, ecosystems and related fisheries and to highlight their criteria of efficiency as management tools for a sustainable exploitation. MPAs are efficient for conservation purposes and resource restoration, especially inside their borders. MPAs can also be part of fisheries management systems, but there is a lack of knowledge about their wider scale impacts on fish stocks, ecosystem and fisheries. Adjacent fisheries can increase their catches near closed areas, but such effects are delayed until after MPA establishment and are often limited over distance. Even though local specificities in ecosystems and fishing resources lead to high variability in MPA effects, four major criteria modulate the efficiency of MPAs for fisheries management: (1) the size of the closed area; (2) the level of protection of essential habitats for exploited resources; (3) MPA integration as part of wider integrated fisheries management plans; and (4) efficient monitoring and regulation systems, including participative decision making, to ensure that restrictive measures are respected

    Fishing impacts on the trophic functioning of marine ecosystems, a comparative approach using trophodynamic models

    No full text
    Faced with the global overexploitation of marine resources and the rapid degradation of ecosystems’ integrity, many states agreed to the principle of an ecosystem approach to fisheries (EAF). In fact, overfishing induces strong decrease of targeted species biomass, which impact predators, their competitors, prey, and ultimately the ecosystems’ trophic networks. Thus, it is an important challenge to understand the trophic functioning of marine ecosystems and the related impacts of fisheries. In this spirit, my thesis was developed to address concerns about the potential impacts of fisheries on the underlying trophic functioning, and to better understand this trophic functioning and its variability through ecosystems. Two well-known trophodynamic models were used : Ecopath with Ecosim (EwE) and EcoTroph (ET). First, I developed EcoBase, i.e., an online repository to gather and communicate information from EwE models, which enabled to give a global overview of the applications of the EwE modeling approach. Then, the ET model was corrected and standardized through the creation of a software package in R. A new trophic control, i.e., foraging arena (FA) trophic control, was integrated to study its impacts on trophic flows and fishing effects on aquatic ecosystem trophic networks. I showed that that making ecosystem behavior more realistic by incorporating FA controls into EcoTroph decreased the resistance and the production of modeled ecosystems facing increasing fishing mortality. An analysis of case studies focusing on marine protected areas (MPAs) was then performed using EwE and ET. I analyzed the potential spillover effect from three MPAs, and showed that their potential exports were at the same order of magnitude as the amount of catch that could have been obtained inside the reserve. Finally, a meta-analysis of marine ecosystem trophic functioning was conducted using 127 EwE models, which showed that ecosystem types were distinguished by different biomass trophic spectra and associated trophic indices. These differences were mainly driven by different production, but also kinetic for some ecosystem types. In conclusion, trophodynamic models, as EwE and ET, appeared to be useful tools to better understand the trophic functioning of marine ecosystems, its variability through ecosystems, and the associated impacts of fisheries.Science, Faculty ofZoology, Department ofGraduat

    An Introduction to the EcoTroph R Package: Analyzing Aquatic Ecosystem Trophic Networks

    No full text
    Abstract Recent advances in aquatic ecosystem modelling have particularly focused on trophi
    • 

    corecore