282 research outputs found

    Encapsulated Search Index: Public-Key, Sub-linear, Distributed, and Delegatable

    Get PDF
    We build the first sub-linear (in fact, potentially constant-time) public-key searchable encryption system: − server can publish a public key PKPK. − anybody can build an encrypted index for document DD under PKPK. − client holding the index can obtain a token zwz_w from the server to check if a keyword ww belongs to DD. − search using zwz_w is almost as fast (e.g., sub-linear) as the non-private search. − server granting the token does not learn anything about the document DD, beyond the keyword ww. − yet, the token zwz_w is specific to the pair (D,w)(D, w): the client does not learn if other keywords w2˘7ww\u27\neq w belong to DD, or if w belongs to other, freshly indexed documents D2˘7D\u27. − server cannot fool the client by giving a wrong token zwz_w. We call such a primitive Encapsulated Search Index (ESI). Our ESI scheme can be made (t,n)(t, n)- distributed among nn servers in the best possible way: non-interactive, verifiable, and resilient to any coalition of up to (t1)(t − 1) malicious servers. We also introduce the notion of delegatable ESI and show how to extend our construction to this setting. Our solution — including public indexing, sub-linear search, delegation, and distributed token generation — is deployed as a commercial application by Atakama

    CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus

    Get PDF
    The rice blast fungus Magnaporthe oryzae is the most serious pathogen of cultivated rice and a significant threat to global food security. To accelerate targeted mutation and specific genome editing in this species, we have developed a rapid plasmid-free CRISPR-Cas9-based genome editing method. We show that stable expression of Cas9 is highly toxic to M. oryzae. However efficient gene editing can be achieved by transient introduction of purified Cas9 pre-complexed to RNA guides to form ribonucleoproteins (RNPs). When used in combination with oligonucleotide or PCR-generated donor DNAs, generation of strains with specific base pair edits, in-locus gene replacements, or multiple gene edits, is very rapid and straightforward. We demonstrate a co-editing strategy for the creation of single nucleotide changes at specific loci. Additionally, we report a novel counterselection strategy which allows creation of precisely edited fungal strains that contain no foreign DNA and are completely isogenic to the wild type. Together, these developments represent a scalable improvement in the precision and speed of genetic manipulation in M. oryzae and are likely to be broadly applicable to other fungal species

    Ability of phages to infect Acinetobacter calcoaceticus-Acinetobacter baumannii complex species through acquisition of different pectate lyase depolymerase domains

    Get PDF
    Bacteriophages are ubiquitous in nature and represent a vast repository of genetic diversity, which is driven by the endless coevolution cycle with a diversified group of bacterial hosts. Studying phage-host interactions is important to gain novel insights into their dynamic adaptation. In this study, we isolated 12 phages infecting species of the Acinetobacter baumannii-Acinetobacter calcoaceticus complex which exhibited a narrow host range and similar morphological features (podoviruses with short tails of 9-12 nm and isometric heads of 50-60 nm). Notably, the alignment of the newly sequenced phage genomes (40-41 kb of DNA length) and all Acinetobacter podoviruses deposited in Genbank has shown high synteny, regardless of the date and source of isolation that spans from America to Europe and Asia. Interestingly, the C-terminal pectate lyase domain of these phage tail fibers is often the only difference found among these viral genomes, demonstrating a very specific genomic variation during the course of their evolution. We proved that the pectate lyase domain is responsible for phage depolymerase activity and binding to specific Acinetobacter bacterial capsules. We discuss how this mechanism of phage-host co-evolution impacts the tail specificity apparatus of Acinetobacter podoviruses.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI01–0145-FEDER-006684) and the Project PTDC/BBB-BSS/6471/2014 (POCI-01–0145-FEDER-016678). This work was also supported by BioTecNorte operation (NORTE-01–0145FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte. We acknowledge Dr. Lenie Dijkshoorn (Leiden Medical Center) for the provision of some strains (LUH or RUH designations). AFM was performed at i3s- Instituto de Investigação e Inovação para a Sa ude at the Biointerfaces and Nanotechnology platform. SS is an FCT Investigator (IF/01413/ 2013). HO and ARC acknowledge FCT for grants SFRH/BPD/ 111653/2015 and SFRH/BPD/94648/2013 respectively. The authors declare that they have no competing financial interests.info:eu-repo/semantics/publishedVersio

    Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment

    Get PDF
    Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment

    Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement

    Get PDF
    [EN] Whole-genome resequencing provides information of great relevance for crop genetics, evolution, and breeding. Here, we present the first whole-genome resequencing study using seven eggplant (Solanum melongena) and one wild relative (Solanum incanum) accessions. These eight accessions were selected for displaying a high phenotypic and genetic diversity and for being the founder parents of an eggplant multiparent advanced generation intercrosses population. By resequencing at an average depth of 19.8x and comparing to the high-quality reference genome "67/3" over 10 million high-reliable polymorphisms were discovered, of which over 9 million (84.5%) were single nucleotide polymorphisms and more than 700,000 (6.5%) InDels. However, while for the S. melongena accessions, the variants identified ranged from 0.8 to 1.3 million, over 9 million were detected for the wild S. incanum. This confirms the narrow genetic diversity of the domesticated eggplant and suggests that introgression breeding using wild relatives can efficiently contribute to broadening the genetic basis of this crop. Differences were observed among accessions for the enrichment in genes regulating important biological processes. By analyzing the distribution of the variants, we identified the potential footprints of old introgressions from wild relatives that can help to unravel the unclear domestication and breeding history. The comprehensive annotation of these eight genomes and the information provided in this study represents a landmark in eggplant genomics and allows the development of tools for eggplant genetics and breeding.This work has been funded by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 677379 (G2P-SOL project: Linking genetic resources, genomes, and phenotypes of Solanaceous crops), by the Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional/European Regional Development Fund (grant AGL2015-64755-R), and by the Spanish Ministerio de Ciencia, Innovacion y Universidades (MCIU), Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional/European Regional Development Fund (grant RTI2018-09592-B-100). PG is grateful to Universitat Politecnica de Valencia and to Japan Society for the Promotion of Science for their respective postdoctoral grants [PAID-10-18 and FY2019 JSPS Postdoctoral Fellowship for Research in Japan (Standard)].Gramazio, P.; Yan, H.; Hasing, T.; Vilanova Navarro, S.; Prohens Tomás, J.; Bombarely, A. (2019). Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement. Frontiers in Plant Science. 10:1-17. https://doi.org/10.3389/fpls.2019.01220S11710Acquadro, A., Barchi, L., Gramazio, P., Portis, E., Vilanova, S., Comino, C., … Lanteri, S. (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLOS ONE, 12(7), e0180774. doi:10.1371/journal.pone.0180774Alonso-Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K. M., … Ding, W. (2016). 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 166(2), 481-491. doi:10.1016/j.cell.2016.05.063Aronesty, E. (2013). Comparison of Sequencing Utility Programs. The Open Bioinformatics Journal, 7(1), 1-8. doi:10.2174/1875036201307010001Barchi, L., Lanteri, S., Portis, E., Acquadro, A., Valè, G., Toppino, L., & Rotino, G. L. (2011). Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-304Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-wBarchi, L., Acquadro, A., Alonso, D., Aprea, G., Bassolino, L., Demurtas, O., … Giuliano, G. (2019). Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01005Bao, G., Zhuo, C., Qian, C., Xiao, T., Guo, Z., & Lu, S. (2015). Co-expression ofNCEDandALOimproves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnology Journal, 14(1), 206-214. doi:10.1111/pbi.12374Brozynska, M., Furtado, A., & Henry, R. J. (2015). Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnology Journal, 14(4), 1070-1085. doi:10.1111/pbi.12454Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., … Weigel, D. (2011). Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 43(10), 956-963. doi:10.1038/ng.911Causse, M., Desplat, N., Pascual, L., Le Paslier, M.-C., Sauvage, C., Bauchet, G., … Bouchet, J.-P. (2013). Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics, 14(1), 791. doi:10.1186/1471-2164-14-791Cavanagh, C., Morell, M., Mackay, I., & Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 11(2), 215-221. doi:10.1016/j.pbi.2008.01.002Cericola, F., Portis, E., Toppino, L., Barchi, L., Acciarri, N., Ciriaci, T., … Lanteri, S. (2013). The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin. PLoS ONE, 8(9), e73702. doi:10.1371/journal.pone.0073702Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. doi:10.4161/fly.19695Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., … DePristo, M. A. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. doi:10.1093/bioinformatics/btr330Dempewolf, H., Baute, G., Anderson, J., Kilian, B., Smith, C., & Guarino, L. (2017). Past and Future Use of Wild Relatives in Crop Breeding. Crop Science, 57(3), 1070-1082. doi:10.2135/cropsci2016.10.0885Deng, Y., Srivastava, R., & Howell, S. H. (2013). Protein kinase and ribonuclease domains of IRE1 confer stress tolerance, vegetative growth, and reproductive development in Arabidopsis. Proceedings of the National Academy of Sciences, 110(48), 19633-19638. doi:10.1073/pnas.1314749110Jadhav, S. K., Tiwari, K. L., & Gupta, S. (2012). Modified CTAB Technique for Isolation of DNA from some Medicinal Plants. Research Journal of Medicinal Plant, 6(1), 65-73. doi:10.3923/rjmp.2012.65.73Du, X., Huang, G., He, S., Yang, Z., Sun, G., Ma, X., … Li, F. (2018). Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature Genetics, 50(6), 796-802. doi:10.1038/s41588-018-0116-xFelcher, K. J., Coombs, J. J., Massa, A. N., Hansey, C. N., Hamilton, J. P., Veilleux, R. E., … Douches, D. S. (2012). Integration of Two Diploid Potato Linkage Maps with the Potato Genome Sequence. PLoS ONE, 7(4), e36347. doi:10.1371/journal.pone.0036347Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. doi:10.1093/bioinformatics/bts565Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D. M., … Fei, Z. (2019). The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 51(6), 1044-1051. doi:10.1038/s41588-019-0410-2Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14-22. doi:10.1016/j.scienta.2010.12.007Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenson, B., & Zhu, J.-K. (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proceedings of the National Academy of Sciences, 99(17), 11507-11512. doi:10.1073/pnas.172399299Gramazio, P., Prohens, J., Plazas, M., Andújar, I., Herraiz, F. J., Castillo, E., … Vilanova, S. (2014). Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0350-zGramazio, P., Blanca, J., Ziarsolo, P., Herraiz, F. J., Plazas, M., Prohens, J., & Vilanova, S. (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genomics, 17(1). doi:10.1186/s12864-016-2631-4Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F. J., & Vilanova, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01477Gramazio, P., Prohens, J., Borràs, D., Plazas, M., Herraiz, F. J., & Vilanova, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica, 213(12). doi:10.1007/s10681-017-2057-3GRAMAZIO, P., PROHENS, J., PLAZAS, M., MANGINO, G., HERRAIZ, F. J., GARCÍA-FORTEA, E., & VILANOVA, S. (2018). Genomic Tools for the Enhancement of Vegetable Crops: A Case in Eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 1-13. doi:10.15835/nbha46110936Grzebelus, D., Gładysz, M., Macko-Podgórni, A., Gambin, T., Golis, B., Rakoczy, R., & Gambin, A. (2009). Population dynamics of miniature inverted-repeat transposable elements (MITEs) in Medicago truncatula. Gene, 448(2), 214-220. doi:10.1016/j.gene.2009.06.004Guo, S., Zhang, J., Sun, H., Salse, J., Lucas, W. J., Zhang, H., … Wang, Z. (2012). The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 45(1), 51-58. doi:10.1038/ng.2470Hill, T. A., Ashrafi, H., Reyes-Chin-Wo, S., Yao, J., Stoffel, K., Truco, M.-J., … Van Deynze, A. (2013). Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip. PLoS ONE, 8(2), e56200. doi:10.1371/journal.pone.0056200Hirakawa, H., Shirasawa, K., Miyatake, K., Nunome, T., Negoro, S., Ohyama, A., … Fukuoka, H. (2014). Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 21(6), 649-660. doi:10.1093/dnares/dsu027Hu, J., Manduzio, S., & Kang, H. (2019). Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00500Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., … Han, B. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42(11), 961-967. doi:10.1038/ng.695Hulse-Kemp, A. M., Ashrafi, H., Plieske, J., Lemm, J., Stoffel, K., Hill, T., … Van Deynze, A. (2016). A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding. Horticulture Research, 3(1). doi:10.1038/hortres.2016.36Hurtado, M., Vilanova, S., Plazas, M., Gramazio, P., Andújar, I., Herraiz, F. J., … Prohens, J. (2014). Enhancing conservation and use of local vegetable landraces: the Almagro eggplant (Solanum melongena L.) case study. Genetic Resources and Crop Evolution, 61(4), 787-795. doi:10.1007/s10722-013-0073-2Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314. doi:10.1080/10618600.1996.10474713Kim, C., Guo, H., Kong, W., Chandnani, R., Shuang, L.-S., & Paterson, A. H. (2016). Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Science, 242, 14-22. doi:10.1016/j.plantsci.2015.04.016Kim, S., Park, M., Yeom, S.-I., Kim, Y.-M., Lee, J. M., Lee, H.-A., … Kim, K.-T. (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 46(3), 270-278. doi:10.1038/ng.2877Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant ( Solanum melongena ). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039Lam, H.-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.-L., … Zhang, G. (2010). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 42(12), 1053-1059. doi:10.1038/ng.715Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. doi:10.1038/nmeth.1923Levin, H. L., & Moran, J. V. (2011). Dynamic interactions between transposable elements and their hosts. Nature Reviews Genetics, 12(9), 615-627. doi:10.1038/nrg3030Lewicki, T. (1974). West African Food in the Middle Ages. doi:10.1017/cbo9780511759796Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Li, H. (2014). Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics, 30(20), 2843-2851. doi:10.1093/bioinformatics/btu356Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2014). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201(3), 463-469. doi:10.1007/s10681-014-1234-xMahesh, S., & Udayakumar, M. (2017). Peanut RNA Helicase AhRH47 Sustains Protein Synthesis Under Stress and Improves Stress Adaptation in Arabidopsis. Plant Molecular Biology Reporter, 36(1), 58-70. doi:10.1007/s11105-017-1056-9Meyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006Meyer, R. S., Whitaker, B. D., Little, D. P., Wu, S.-B., Kennelly, E. J., Long, C.-L., & Litt, A. (2015). Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry, 115, 194-206. doi:10.1016/j.phytochem.2015.02.006Michalovova, M., Vyskot, B., & Kejnovsky, E. (2013). Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity, 111(4), 314-320. doi:10.1038/hdy.2013.51Muñoz-Falcón, J. E., Prohens, J., Vilanova, S., & Nuez, F. (2008). Characterization, diversity, and relationships of the Spanish striped (Listada) eggplants: a model for the enhancement and protection of local heirlooms. Euphytica, 164(2), 405-419. doi:10.1007/s10681-008-9688-3Muñoz-Falcón, J. E., Prohens, J., Vilanova, S., Ribas, F., Castro, A., & Nuez, F. (2008). Distinguishing a protected geographical indication vegetable (Almagro eggplant) from closely related varieties with selected morphological traits and molecular markers. Journal of the Science of Food and Agriculture, 89(2), 320-328. doi:10.1002/jsfa.3452Muñoz-Falcón, J. E., Prohens, J., Vilanova, S., & Nuez, F. (2009). Diversity in commercial varieties and landraces of black eggplants and implications for broadening the breeders’ gene pool. Annals of Applied Biology, 154(3), 453-465. doi:10.1111/j.1744-7348.2009.00314.xNaito, K., Cho, E., Yang, G., Campbell, M. A., Yano, K., Okumoto, Y., … Wessler, S. R. (2006). Dramatic amplification of a rice transposable element during recent domestication. Proceedings of the National Academy of Sciences, 103(47), 17620-17625. doi:10.1073/pnas.0605421103Nelson, M. G., Linheiro, R. S., & Bergman, C. M. (2017). McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data. G3: Genes|Genomes|Genetics, 7(8), 2763-2778. doi:10.1534/g3.117.043893Nidumukkala, S., Tayi, L., Chittela, R. K., Vudem, D. R., & Khareedu, V. R. (2019). DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Critical Reviews in Biotechnology, 39(3), 395-407. doi:10.1080/07388551.2019.1566204Pascual, L., Desplat, N., Huang, B. E., Desgroux, A., Bruguier, L., Bouchet, J.-P., … Causse, M. (2014). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13(4), 565-577. doi:10.1111/pbi.12282Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., … Rokhsar, D. S. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature, 457(7229), 551-556. doi:10.1038/nature07723Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34(2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189-195. doi:10.1038/nature10158Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9Prohens, J., Whitaker, B. D., Plazas, M., Vilanova, S., Hurtado, M., Blasco, M., … Stommel, J. R. (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant,Solanum melongena, and its wild ancestor (S. incanum). Annals of Applied Biology, 162(2), 242-257. doi:10.1111/aab.12017Qi, J., Liu, X., Shen, D., Miao, H., Xie, B., Li, X., … Huang, S. (2013). A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45(12), 1510-1515. doi:10.1038/ng.2801Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841-842. doi:10.1093/bioinformatics/btq033Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030Salas, P., Prohens, J., & Seguí-Simarro, J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2), 261-274. doi:10.1007/s10681-011-0490-2Salikhov, K., Sacomoto, G., & Kucherov, G. (2014). Using cascading Bloom filters to improve the memory usage for de Brujin graphs. Algorithms for Molecular Biology, 9(1), 2. doi:10.1186/1748-7188-9-2Särkinen, T., Bohs, L., Olmstead, R. G., & Knapp, S. (2013). A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology, 13(1), 214. doi:10.1186/1471-2148-13-214Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., … Graves, T. A. (2009). The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 326(5956), 1112-1115. doi:10.1126/science.1178534Shi, L., Wu, Y., & Sheen, J. (2018). TOR signaling in plants: conservation and innovation. Development, 145(13), dev160887. doi:10.1242/dev.160887Shivakumara, T. N., Sreevathsa, R., Dash, P. K., Sheshshayee, M. S., Papolu, P. K., Rao, U., … UdayaKumar, M. (2017). Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Scientific Reports, 7(1). doi:10.1038/s41598-017-02589-0Sim, S.-C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., … Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE, 7(7), e40563. doi:10.1371/journal.pone.0040563Sim, S.-C., Van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., … Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE, 7(9), e45520. doi:10.1371/journal.pone.0045520Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jas

    Analysis of Genomic Sequence Data Reveals the Origin and Evolutionary Separation of Hawaiian Hoary Bat Populations

    Get PDF
    We examine the genetic history and population status of Hawaiian hoary bats (Lasiurus semotus), the most isolated bats on Earth, and their relationship to northern hoary bats (Lasiurus cinereus), through whole-genome analysis of single-nucleotide polymorphisms mapped to a de novo-assembled reference genome. Profiles of genomic diversity and divergence indicate that Hawaiian hoary bats are distinct from northern hoary bats, and form a monophyletic group, indicating a single ancestral colonization event 1.34 Ma, followed by substantial divergence between islands beginning 0.51 Ma. Phylogenetic analysis indicates Maui is central to the radiation across the archipelago, with the southward expansion to Hawai‘i and westward to O‘ahu and Kaua‘i. Because this endangered species is of conservation concern, a clearer understanding of the population genetic structure of this bat in the Hawaiian Islands is of timely importance

    Гидроразрыв пласта на Крапивинском нефтяном месторождении (Томская область)

    Get PDF
    Представлены результаты анализа геолого-физических характеристик и показателей разработки Крапивинского нефтяного месторождения. Отмечены высокие коллекторские условия разработки объекта, наличие высокопроницаемых пластов, высоковязкой нефти, высоких температур. На месторождении в течение нескольких лет проводятся работы по увеличению коэффициента продуктивности на основе применения ГРП. Выявлена зависимость эффективности применения различных технологий от объемов: жидкости-песконосителя, проппанта, от его концентраций, последовательности их ввода в трещину, а также от скорости закачки технологических жидкостей при проведении ГРП. Предложена блок-диаграмма выбора технологии ГРП, установлена наиболее эффективная технология ГРП концевого экранирования (TSO).The results of the analysis of geological and physical characteristics and development indicators of krapivinsk oil field. Marked high permeability conditions of the development facility, the presence of high permeability reservoirs, heavy oil, high temperatures. On the field for several years is working on increasing productivity through the use of hydraulic fracturing. The dependence of the effectiveness of various technologies volume: liquid-sand carrier, proppant, concentrations, sequence of their input into the crack, and the speed of injection fluids when conducting hydraulic fracturing. The proposed block diagram of the selection of hydraulic fracturing, the most effective technology of hydraulic fracturing of the end shield (TSO)
    corecore