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Abstract

WeexaminethegenetichistoryandpopulationstatusofHawaiianhoarybats (Lasiurus semotus), themost isolatedbatsonEarth,and

their relationship to northern hoary bats (Lasiurus cinereus), through whole-genome analysis of single-nucleotide polymorphisms

mapped to a de novo-assembled reference genome. Profiles of genomic diversity and divergence indicate that Hawaiian hoary bats

are distinct from northern hoary bats, and form a monophyletic group, indicating a single ancestral colonization event 1.34 Ma,

followed by substantial divergence between islands beginning 0.51 Ma. Phylogenetic analysis indicates Maui is central to the

radiation across the archipelago, with the southward expansion to Hawai‘i and westward to O‘ahu and Kaua‘i. Because this

endangered species is of conservation concern, a clearer understanding of the population genetic structure of this bat in the

Hawaiian Islands is of timely importance.
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Introduction

The terrestrial biota of the Hawaiian archipelago offers nu-

merous models of long-distance colonization and subsequent

evolution on remote oceanic islands (Price and Clague 2002;

Ziegler 2002; Holland and Hadfield 2004; Lerner et al. 2011).

Forming over 70 Myr from a volcanic hot spot in the Earth’s

mantle, the Hawaiian Islands continue to rise above and sub-

sequently sink below the ocean as the Pacific plate moves

northwest across the hotspot (Wilson 1963). This archipelago

is the most isolated large, linear island chain in the world,

spanning 2,600 km across the North Pacific from Kure Atoll

in the northwest to the rising volcanic seamount of L�o‘ihi in

the southeast. North America, the nearest continental source

of biota, lies 3,600 km eastward.

Although successful colonization events for terrestrial

fauna are rare, such events presage impressive radiations

that are represented in Hawai‘i by plants, insects, spiders,

land snails, and birds (Ziegler 2002; Holland and Hadfield

2004; Lerner et al. 2011). Independent of human introduc-

tions, however, only two species of terrestrial mammals, both

bats, successfully established in Hawai‘i. These are the extinct

lava tube bat, Synemporion keana (Ziegler et al. 2016), and
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the northern hoary bat, Lasiurus cinereus (Baird et al. 2015;

Russell et al. 2015). The geographic origin of the ancestor of

S. keana is unknown (Ziegler et al. 2016), whereas that of the

hoary bat diaspora clearly is North American (Russell et al.

2015; Baird et al. 2017). Bonaccorso and McGuire (2013)

tested flight models based on empirical data from energetics,

water balance, life history traits, and morphology of the

northern hoary bat to hypothesize likely flight scenarios that

facilitated hoary bats in reaching Hawai‘i from the continent.

At present, two phylogenetic studies have supported multiple

colonization events by hoary bats to the Hawaiian archipelago

(Russell et al. 2015; Baird et al. 2017). These events represent

the longest successful trans-oceanic dispersal events known

for terrestrial mammals (Bonaccorso and McGuire 2013). The

exact timing for arrivals to the Hawaiian Islands remains ques-

tionable: Russell et al. (2015) found evidence for population

expansions at �10,000 and 800 years ago, whereas Baird

et al. (2017) estimated the initial founding event occurred

1.35 Ma with a population expansion 20,000 years ago.

Here, we hypothesize that genetic divergence with distinct

population structure and low rates of interisland gene flow

exist among hoary bats across the Hawaiian Islands. The avail-

ability of insect food sources year-round on each island may

have reduced gene flow between islands as there is likely little

adaptive benefit from regular interisland movements despite

the excellent flight range capability of hoary bats (Bonaccorso

and McGuire 2013; Bonaccorso et al. 2015). The northern

hoary bat, L. cinereus, is a solitary, foliage roosting, insectivo-

rous bat that, in contrast to the Hawaiian hoary bat, Lasiurus

semotus, undergoes large-scale annual migrations in gyres

across large reaches of North America, likely in response to

seasonal availability in food (Cryan 2003; Hayes et al. 2015). It

is distributed as a very large panmictic population with virtu-

ally no distinct regional population structure (Korstian et al.

2015, Pylant et al. 2016). Migratory bats in general have high

levels of gene flow and little population genetic structure

(Burns and Broders 2014; Korstian et al. 2015; Vonhof and

Russell 2015) compared with nonmigratory bats (Turmelle

et al. 2011). Both Russell et al. (2015) and Baird et al.

(2017) report unique mitochondrial haplotypes and nuclear

gene variants found only in hoary bats inhabiting the

Hawaiian Islands.

The systematics of lasurine (tree) bats using molecular tech-

niques has been reviewed by others (Baird et al. 2015, 2017;

Ziegler et al. 2016; Novaes et al. 2018). Although the system-

atic revision by Baird et al. (2017) placed the hoary bats in a

new genus Aeorestes, as distinct from the genus Lasiurus,

their revision is counter to that conservatively argued by

Ziegler et al. (2016). Ziegler et al. (2016), Novaes et al.

(2018), and Wilson and Mittermier (2019) advocated support

of an alternative viewpoint that retains the genus name

Lasiurus. Here, we will retain the use of Lasiurus, following

the taxonomy of Ziegler et al. (2016), Novaes et al. (2018),

and Wilson and Mittermier (2019). Recent examination of

mitochondrial and nuclear DNA resulted in the recommenda-

tion that Hawaiian hoary bat receive full species status, and the

additional proposal for the existence of two genetically distinct

species of Hawaiian bats: Aeorestes semotus and Aeorestes

cinereus (Baird et al. 2017). However, no identifiable morpho-

logical features have been published to distinguish between

the proposed species; thus, we group all bats in the study

together and refer to them as Hawaiian hoary bats.

In this article, we examine the genetic history and popula-

tion structure of Hawaiian hoary bats, and their relationship to

the northern hoary bat L. cinereus, through novel analysis of

single-nucleotide polymorphisms (SNPs) data. We also report

levels of genomic diversity and divergence, population struc-

ture, and gene signatures of selective sweeps in populations

on the individual islands of Hawai‘i, Maui, O‘ahu, and Kaua‘i.

Materials and Methods

Tissue Sampling and DNA Extraction

Tissue samples from wings and muscles were collected during

necropsies performed on 23 bat carcasses from Hawai‘i

(n ¼ 6), Kaua‘i (n ¼ 1), O‘ahu (n ¼ 8), and Maui (n ¼ 8) be-

tween 2009 and 2015 (fig. 1). These included eight males and

15 females. Carcasses were refrigerated or frozen upon dis-

covery. Tissue samples were collected from pliable wing mem-

branes, where possible, with a sterile 3-mm circular biopsy

tool. When carcass condition was suitable, pectoral muscle

tissue was collected with a sterile scalpel. All tissue samples

were stored in 1.5-ml tubes containing a preservation solution

of NaCl-saturated 20% DMSO and frozen at –80 �C until

DNA extraction. DNA was isolated from bat tissues using a

DNeasy Blood and Tissue Kit (Qiagen) according to the man-

ufacturer’s protocol for purification of total DNA from animal

tissues. RNase A treatment was used to remove RNA contam-

inants. Where DNA concentration was lower than desired, a

Genomic DNA Clean & Concentrator kit (Zymo Research) was

used to purify samples. Genomic library preparation and se-

quencing was performed at the Virginia Bioinformatics

Institute Genomic Core Lab. Tissue samples were authorized

for collection under the following permits; State of Hawai‘i

Division of Forestry and Wildlife Protected Wildlife Permit WL

16-04; US Fish and Wildlife Service Threatened and

Endangered Species Permit TE003484-31.

Sequencing

Sequencing was performed from a TruSeq paired-end library

(2� 150 bp) using HiSeq 2500 (Illumina). The sequencing

depth for each individual Hawaiian hoary bat ranged from

3.55� (O23) to 6.85� (H16) with average of 5.63� (supple-

mentary table S1, Supplementary Material online). For com-

parison, publicly available Illumina sequences from a single

northern hoary bat (L. cinereus) sample from Maryland,

USA, were used (Consortium et al. 2014).
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Genome Assembly

Adapters were first removed from raw sequencing reads, and

low quality and duplicated reads were removed using

FastqMcf v1.04.636 (Aronesty 2013). Post-quality control

(QC) reads from all individuals were merged together and

further duplication removal was conducted to accelerate the

assembly process. To exclude possible genomic contamina-

tion, all reads were aligned to a bacterial database down-

loaded from NCBI (http://www.ncbi.nlm.nih.gov/), and only

unmapped reads were used for the assembly. Processed reads

were assembled with Spades v3.0.0 (Bankevich et al. 2012).

Contigs in the final assembly with length <500 bp were dis-

carded from further analyses. The final assembly was used as

the reference for mapping and genotyping.

Gene Prediction and Annotation

Assembly sequences were first masked using RepeatMasker

v4.0.3 (http://www.repeatmasker.org/) with parameters set

to “-s -a -nolow” and using a customized repeat library.

Protein-coding genes were predicted using MAKER2 v

2.31.8 (Holt and Yandell 2011), which used protein sequen-

ces that were downloaded from Ensembl (www.ensembl.org)

and RefSeq (www.ncbi.nlm.nih.gov/refseq) as protein

homology evidence and integrated with prediction methods

including BlastX v2.2.28 (Altschul 1997), SNAP (Korf 2004),

and Augustus v3.3 (Stanke and Waack 2003). The SNAP

HMM file was generated by training with mammalian gene

sequences. The Augustus model file was generated by train-

ing 3,026 core genes of vertebrates from a genome com-

pleteness assessment tool BUSCO v3.0 (Sim~ao et al. 2015).

Predicted genes were subsequently used as query sequences

in a BlastX database search of NR database (the nonredun-

dant database, http://www.ncbi.nlm.nih.gov/). BlastX align-

ments with e-value >1e-30 were discarded, and the top hit

was used to annotate the query genes.

Genome Completeness

Two methods were used for genome completeness estima-

tion. CEGMA v2.0 (Parra et al. 2007) examines the existence

of 248 core eukaryotic genes in assembly. BUSCO v3.0

(Sim~ao et al. 2015) was used to assess universal single-copy

orthologs of vertebrates in the assembly.

Mapping and Genotyping

Post-QC reads from each individual were mapped to the ref-

erence assembly using BWA v0.7.12 (Li and Durbin 2009)

FIG. 1.—Map of the Hawaiian Islands with collection sites for Hawaiian hoary bat tissues used in this study. Sites with n>1 are denoted with an asterisk.
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with default parameters. Genotypes for each sample were

generated by using GATK v4.0.9 genotyping model

(DePristo et al. 2011). Only sites with genotyping quality

>30 and minimal depth 5 were kept, and a polymorphic

site required at least two reads supporting the alternative al-

lele. Population mutation rate h (Watterson’s estimator), nu-

cleotide diversity (p), and fixation index (FST) were calculated

based on a window size of 10 kb. For comparison, publicly

available reads from L. cinereus (Consortium et al. 2014),

L. borealis (Consortium et al. 2014), and M. brandtii (Seim

et al. 2013) were downloaded, processed and mapped

against the reference assembly as described above.

Population Genetic Structure

Sampled individuals were projected into a subspace spanned

by the first principal components (PCs) using their genotypes

as features. Top PCs reflect variation due to population struc-

ture in the sample, with individuals from the same population

found to form a cluster in this subspace (Novembre and

Stephens 2008; Ma and Amos 2012). EIGENSOFT v6.0.1

(Patterson et al. 2006; Price et al. 2006) was used for PCA.

STRUCTURE v2.3.4 (Pritchard et al. 2000), which implements

a model-based clustering method, was used for inferring pop-

ulation structure using genotype data. Individuals were

assigned to populations, or jointly to two or more populations

if their genotypes indicate that they were admixed. To mini-

mize the effect of linkage and nonneutrality, the STRUCTURE

analysis was based on a subset of all SNPs (a total of 199,921)

where each contig contributes one random SNP from a non-

coding region. STRUCTURE was run independently 20 times

for each K value (range 1–10) using 250,000 iterations for

burn-in and 1,000,000 iterations for MCMC (Markov chain

Monte Carlo) with admixture model, and default values were

used for other parameters. The delta K (the second order rate

of change of the likelihood) method (Evanno et al. 2005) was

also used to detect the number of clusters (K).

Phylogenetic Reconstruction

A coalescent analysis implemented in SNAPP (Bryant et al.

2012) module from BEAST package v2.6.0 (Bouckaert et al.

2019), was used to directly infer the species/population tree

from unlinked biallelic markers. A total of 10,000 unlinked

nonmissing SNPs was loaded to SNAPP analysis, whereas the

northern hoary bat (L. cinereus) was used as an outgroup. The

SNAPP run was conducted with 1,000,000 MCMC genera-

tions and 50,000 as the burn-in, sampled every 1,000 gener-

ations. A Gamma distribution was assigned to Lambda prior,

with an Alpha of 1 and a Beta of 200. TreeAnnotator v2.6.0

was used to construct the “Maximum clade credibility” tree

and annotate it with posterior probabilities. Tree sets were

visualized in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/

figtree/) and DENSITREE v2.2.7 (Bouckaert 2010). The date of

emergence of the island of Hawai‘i (Fleischer et al. 1998;

Lerner et al. 2011; Baird et al. 2017) was used (0.43 Ma) to

infer the divergence dates, the node separating Hawai‘i from

the O’ahu/Kaua’i clade was set to 0.43 Ma.

Repeat Elements Analysis

A de novo repeat-family modeling package RepeatModeler

v1.0.8 (http://www.repeatmasker.org) was used (with default

parameters) to identify repeat elements. The output repeat

library was combined with the mammalian repeat library from

Repbase (http://www.girinst.org/repbase/) to form a custom-

ized repeat library. This library was used as the input of

RepeatMasker v4.0.3 (-lib), in which RMBlast v2.2.28 was

chosen as the sequence search engine (supplementary table

S3, Supplementary Material online).

Sweep Detection

Selective sweeps were identified with Pool-hmmv1.4.3

(Boitard et al. 2013), a hidden Markov model for detecting

selective sweep based on Pool-Seq data. Only contigs with

size >100 kb were included in this analysis (655 contigs with

total size of 83.79 Mb).

Results

Reference Genome Assembly

We sequenced the individual genomes of 23 Hawaiian hoary

bats (8 males and 15 females), including individuals from the

islands of Hawai‘i (n ¼ 6), Kaua‘i (n ¼ 1), O‘ahu (n ¼ 8), and

Maui (n ¼ 8) collected between 2009 and 2015 (fig. 1). These

samples were sequenced at low coverage (3.55–6.85�) using

the HiSeq Illumina platform, followed by a de novo-assembly

of a reference genome, and comparison of SNP polymor-

phisms across the 23 samples relative to publicly available

sequences of a single northern hoary bat from Maryland,

USA, obtained from Genomic Resources Development

Consortium (Consortium et al. 2014). The total size of the

reference assembly is �2.07 Gb, with an average contig size

of 9,556 bases (N50¼ 23,695; supplementary table S1,

Supplementary Material online). Even though the estimated

genome completeness was low (37–55%, supplementary ta-

ble S2, Supplementary Material online), we predicted 22,131

genes, 21,587 (97.54%) of which were annotated. Repeat

elements constituted�38% of the unmasked assembly, with

LINE retroelements being most abundant (�20%, supple-

mentary table S3, Supplementary Material online).

Sequence Polymorphism and Divergence

Mapping rates against the reference assembly ranged from

99.8% to 99.9% (supplementary table S4, Supplementary

Material online). We found a total of 21,808,031 polymorphic

sites, including 208,403 (0.01%) in coding sequences, among

the 23 Hawaiian hoary bats. A total of 3,629 population-
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unique SNPs was found, with 1,074, 717, and 1,838 SNPs

fixed in each Hawai‘i, Maui, and O‘ahu populations, respec-

tively, whereas the alternative allele fixed in the other two

populations, under the sequencing depth exceeding 10 reads.

As many as 42% (Hawai‘i), 24% (Maui), and 48% (O‘ahu) of

all SNPs were fixed in one population, while being heterozy-

gous in the rest. Heterozygosity varied between populations,

ranging from 0.138 in O‘ahu, 0.157 in Hawai‘i, to 0.206 in

Maui. All fixation index (FST) estimates between populations

from different islands exceeded 0.08 (table 1), indicating a

high degree of genetic differentiation among the islands’

populations. The results based on principal components anal-

ysis (PCA) (Patterson et al. 2006; Price et al. 2006) (fig. 2) and

STRUCTURE (Pritchard et al. 2000) (fig. 3) both corroborate

this pattern. For the latter, we used the delta K method

(Evanno et al. 2005) to determine the parameter K, which

describes the number of clusters that make up the total pop-

ulation, and found that K ¼ 5 has the highest support

(fig. 3A). However, we notice after visual inspection that the

K ¼ 3 seems to make more biological sense, as all K clusters

include different proportions of individuals from each sam-

pling location, and all K clusters include at least some individ-

uals who are strongly associated with that cluster (fig. 3B).

Populations from Maui and Hawai‘i were less distant from

each other than either one from the O‘ahu population, also

consistent with our FST estimates. The single sample from

Kaua‘i clustered closely with the O‘ahu population (fig. 2).

The site frequency spectrum (SFS) analysis reveals a high den-

sity of minor alleles in the populations from Hawai‘i, Maui,

and O‘ahu, which would be consistent with more recent

expansions (supplementary fig. S1, Supplementary Material

online). The estimates of population mutation rate h
(Watterson’s estimator) range from 0.0010 to 0.0015,

whereas nucleotide diversity (p) ranges from 0.0011 to

0.0016 (supplementary table S5, Supplementary Material

online).

Phylogenetic Analysis and Divergence Dating

The SNAPP analysis yielded a tree topology with all ingroup

nodes supported by the maximum posterior probability

(fig. 4), which indicates an initial colonization of Maui, fol-

lowed by migration to the other islands. Using the emergence

of subaerial magma dates for Hawai‘i (�0.43 Ma) as a cali-

bration point (Fleischer et al. 1998, Lerner et al. 2011), we

estimated that the common ancestor of Hawaiian hoary bats

arrived 1.34 Ma (95% confidence interval [CI] of 1.09–1.92)

with a single dispersal to the archipelago, specifically to the

island of Maui. Dispersal to the other islands from Maui may

have begun as early as 0.51 Ma (95% CI of 0.46–0.58 Ma),

with the Hawai‘i population diverging 0.43 Ma (95% CI of

0.37–0.48), and the establishment of populations on O‘ahu

and Kaua‘i 0.27 Ma (95% CI of 0.21–0.31 Ma). The initial

founding date of ancestral populations, agrees with that pro-

posed by Baird et al. (2017) however, dates of dispersal

among islands are considerably older than previously reported

dates of population expansions (Russell et al. 2015; Baird et al.

2017), revealing far longer periods of habitation on each of

these three islands. Alternatively, 0.60 Ma has been indicated

as potentially the earliest emergence date for Hawai‘i Island,

based on the emergences of Mahukona (now submerged)

and Kohala volcanoes (Clague 1996); our estimates of bat

population divergence times may actually be younger than

they really are, if suitable habitat was available on Hawai‘i

Island prior to 0.43 Ma.

Selective Sweep Signatures

Given the prevalence of adaptive radiation among Hawaiian

biota (Ziegler 2002; Holland and Hadfield 2004; Lerner et al.

2011), we set out to investigate adaptive changes in the bats

at the genomic sequence level. To this end, we scanned the

largest 655 contigs (>100 kb each), covering a total of

83.8 Mb of the assembly, for patterns of heterozygosity ero-

sions corresponding to signatures of selective sweeps. Out of

Table 1

FST Estimates between island populations of Hawaiian hoary bats with

Multiple Individual Samples (FST Based on a Single Polymorphic Site and

the Average Was Taken)

Hawai‘i Maui

Hawai‘i — —

Maui 0.08508 —

O‘ahu 0.11612 0.09199

FIG. 2.—PCA result plot showing clustering of individual bats from

four Hawaiian Islands using 21,808,031 SNPs. Sample information in-

cluded in supplementary table S4, Supplementary Material online.
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the 655 contigs, 78, 159, and 311 harbored sweep signatures

in Hawai‘i, Maui, and O‘ahu populations, respectively. The

population in O‘ahu had significantly more genomic regions

affected by such selective sweeps than the other populations

combined (Fisher’s exact test P¼ 1.24 � 10�32; table 2).

Notably, 73% of the signatures by size of sweep region in

O‘ahu were unique to that population, unlike those in Maui

(45%) and Hawai‘i (20%). These patterns can be confounded

by global patterns of heterozygosity, which was lowest in

O‘ahu, and potentially related to demographic history rather

than enhanced positive selection in one population relative to

another. Nevertheless, there were 413 nonsynonymous and

343 synonymous SNPs within coding DNA of the putative

regions of population-unique selective sweeps. The 413

nonsynonymous mutations were found within 99 genes (sup-

plementary table S6, Supplementary Material online). Genes

with the highest number (m) of nonsynonymous mutations

were Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase

1 (m ¼ 24) fixed or near-fixed in O‘ahu, BAZ1A

(Bromodomain adjacent to zinc finger domain protein 1A,

m ¼ 17) fixed or near-fixed in O‘ahu, Laminin subunit

gamma-1 (m ¼ 16) fixed or near-fixed in O‘ahu, GRAM

domain-containing protein 1B (m ¼ 13) fixed or high fre-

quencies in Hawai‘i and O‘ahu, and Glypican-1 (m ¼ 12) fixed

or high frequencies in O‘ahu and Maui.

Echolocation-Related Genes

Two genes, Cadherin 23 (Cdh23) and protocadherin 15

(Pcdh15), related to echolocation in bats and toothed whales

(Shen et al. 2012) were found in the annotated reference

assembly (supplementary table S7, Supplementary Material

online). Cdh23 had 10 polymorphic sites, nine of which

were in introns and one in the coding sequence (position

83690, a nonsynonymous change of C into A leading to

Leu!Met), with the latter polymorphic only in O‘ahu (minor

allele A frequency 13%). Pcdh15 showed 86 polymorphic

sites, 82 intronic and four exonic, including one synonymous

(position 15801), and three nonsynonymous sites. The first

nonsynonymous site (position 28075, ATT!ACT; Ile!Thr)

was polymorphic only in Hawai‘i (minor allele C frequency

8%). Strikingly, polymorphism in the second nonsense site

(position 39029) produced a stop codon (TTA!TAA;

Leu!STOP), with significant higher frequency in Hawai‘i

(65%) and Maui (64%) samples than in O‘ahu samples

(0%; Fisher’s exact test P¼ 1.96 � 10�5), whereas the only

sample from Kaua‘i was heterozygous. If translated, this var-

iant would lead to a substantial truncation of the polypeptide

product from 437 to 251 amino acids. We also failed to find

such an allele in genomes of three other species, namely the

northern hoary bat L. cinereus, eastern red bat, L. borealis

(Consortium et al. 2014), and Brandt’s bat, M. brandtii

(Seim et al. 2013). The third Pcdh15 nonsynonymous change

(GTG!GGG; Val!Gly) occurred in position 47807, and was

highly polymorphic in all the Hawaiian populations, including

the Kaua‘i sample; however, the North American individual

was homozygous for the major allele.

Discussion

Based on the 23 bat genomes sequenced, we found that

Hawaiian hoary bats are distinct from northern hoary bats

(L. cinereus), and likely form a monophyletic group, given

that the continental population is near-panmictic (Korstian

et al. 2015). This supports previous conclusions on the matter

of a distinct bat species in Hawaii, diverged from a North

American founder to the island of Maui (Baird et al. 2015,

2017). However, we did not find evidence to support Baird

FIG. 3.—Population structure inference based on STRUCTURE analysis

of 199,921 sites for individual bats from four Hawaiian Islands. (A) Ad hoc

statistic delta K analysis indicates a peak at the K¼5; (B) STRUCTURE

population inference with K¼3, 4, 5. Sample information included in

supplementary table S4, Supplementary Material online.
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et al. (2017) that two extant bat species (A. semotus and

A. cinereus) occur within the Hawaiian Islands, nor evidence

that there were multiple waves of colonization in the found-

ing history of hoary bat populations in Hawaii. This discrep-

ancy is likely due to the fact that previous results were based

on a small number of mitochondrial and nuclear markers,

prone to effects of incomplete lineage assortment.

Individuals sampled in our study included bats from both mi-

tochondrial lineages on O‘ahu and Maui described in prior

genetic studies (Russell et al. 2015; Baird et al. 2017). Our

SNP data indicate Hawaiian hoary bats have shared ancestry

with a North American continental relative, but are more

clearly genetically distinct by island rather than maternal line-

age or clade, and likely represent the singular unique

Hawaiian hoary bat species, L. semotus.

Our phylogeny estimates an initial founding event of a

common ancestor to Hawaiian hoary bats shortly after 1

Ma, then divergence and dispersal to other islands from

Maui beginning �0.51 Ma. The potential for dispersal from

Maui to Hawai‘i Island at this time, follows findings of diver-

gence times to Hawai‘i Island for endemic free flying birds,

such as the Hawaiian n�en�e Goose (Branta sandvicensis), the

extinct giant Hawaii Goose (Branta rhuax) (Paxinos et al.

2002), and Hawaiian honeycreepers, specifically the Hawai‘i

‘amakihi (Chlorodrepanis virens) (Lerner et al 2011; Campana

et al. 2019). Observational records from the Krakatau Islands,

show that insectivorous bats along with other complex flora

and fauna recolonized the islands as little as 100 years after a

volcanic eruption destroyed all life (Rawlinson et al 1992).

After the emergence of Hawai‘i, a few decades to a few

hundred years would likely produce an environment suitable

for insectivorous bats to survive, especially with Maui remain-

ing a close, continuous source of plant and animal diaspora. A

relatively quick colonization of Hawai‘i Island would be possi-

ble for this bat species, given their flight ability, and foraging

behavior of exploiting moth fauna associated with newly

formed and vegetated lava landscapes (Bonaccorso et al.

2016; Howarth et al. 2020). Population expansion signals in

Hawaiian hoary bats described by prior studies (Russell et al.

2015; Baird et al. 2017) may instead correspond to growth in

population sizes in response to changes in island biogeo-

graphic features. The Maui Nui island complex experienced

re-emergence during low sea levels �0.02 Ma, whereas the

end of glacial period on Hawai‘i Island occurred �0.01 Ma

(Price and Elliott-Fisk 2004). During this time of climate warm-

ing, vegetation zones expanded upwards in elevation on vol-

canic slopes, creating new habitat. Initial timing of Polynesian

settlement of the Hawaiian Islands is believed to range from

AD 1,000 to 1,200 (Kirch 2011), the most recent expansion

FIG. 4.—SNAPP-based phylogenetic tree inference. (A) The maximum clade credibility or consensus tree, showing approximate divergence of hoary bats

across the Hawaiian archipelago. The axis on the bottom of the figure corresponds to million years before present (Ma), using the emergence of Hawai‘i

(�0.43 Ma) as a calibration point (95% confidence intervals were given in square brackets). (B) The drawing of all sampled trees showing all ingroup nodes

were supported by maximum posterior probabilities (1.00).

Table 2

Putative Selective Sweep Signatures in three island populations ofHawaiian hoary bats.

Population No. of Sweep Regions Size of Sweep Regiona

Hawai‘i (H) 78 4,125,849

Maui (M) 159 8,407,768

O‘ahu (O) 311 20,339,802

H uniqueb 57 814,416

M uniqueb 133 3,799,547

O uniqueb 308 14,883,156

H & Mc 46 2,064,665

H & Oc 57 2,913,091

M & Oc 90 4,209,878

H & M & Oc 38 1,666,329

aTotal size of all contigs (>100 K, 655 contigs) in sweep detection is 83.8 Mb
(83,790,696).

bSweep exists in one population but not in the other two populations.
cOverlap between population.
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signal appearing �800 years ago may indicate a response in

bat populations to land use modification by Polynesian settlers

(Olson and James 1982). Recent population expansions on

the islands are supported by the excess of low frequency

variants in the SFS (Lapierre et al. 2017). Allele frequency

differences between island populations could be due to ge-

netic drift during bottleneck events or “allele surfing” during

a population expansion (Excoffier and Ray 2008).

Although the number of bats per island sampled in our

study is smaller than the studies of Baird et al. (2017) and

Russell et al. (2015), that used fewer markers, our conserva-

tive 3,629 single nucleotide polymorphic loci give more com-

prehensive estimates of genetic diversity and population

structure. Heterozygosity values, an indicator of genetic diver-

sity, in Hawaiian hoary bats on O‘ahu (0.138) and Hawai‘i

(0.157) islands are lower than documented in northern hoary

bats L. cinereus (0.182) by Sovic et al. (2016), yet Maui island

is curiously higher (0.206). Our results also find that popula-

tions of the Hawaiian hoary bat on Maui, O‘ahu, and Hawai‘i

are differentiated by large FST values. The greatest difference

in population structure is between Hawai‘i and O‘ahu,

whereas those of Maui and Hawai‘i are more similar. A pop-

ulation structure with unique subpopulations on each of these

islands also is supported by separation into distinct clusters

from our PCA (fig. 2). The placement of two individuals,

H9-2 and M9, are distinct from the main clusters on their

respective islands; however, increased sampling from these

locations would better illustrate potential substructure within

Hawai‘i and Maui islands. The topographic variability on

larger, recently emerged islands, such as Hawai‘i and Maui,

could maintain separation and show low gene flow due to

stable climatic conditions and year-round presence of insect

prey. Cold winters limit prey availability on the North

American continent, where hoary bats there undergo large-

scale seasonal migrations to reach breeding grounds and win-

ter foraging areas (Cryan 2003). Continental panmixia occurs

in several species of lasiurine bats. Northern hoary bat

(L. cinereus), silver-haired bat (Lasionycteris noctivagans),

and eastern red bat (L. borealis) are genetically diverse across

large regions of the continent but lack strong population

structure (Korstian et al. 2015; Russell et al. 2015; Vonhof

and Russell 2015; Pylant et al. 2016). Although the distances

between adjacent Hawaiian Islands are relatively small, there

may be no strong incentive for bats to move between islands

to access resources for breeding and foraging, and bat ge-

netic structure may mimic that of both endemic and intro-

duced island birds. Several endemic Hawaiian honeycreeper

genera have island specific populations, including the ‘ama-

kihi and nukupu‘u (Hemignathus spp.), ‘akepa (Loxops spp.),

and creepers (Oreomystis spp.) (Lerner et al. 2011). Shultz

et al. (2016) characterized genomic signatures using SNPs in

the house finch, and found that Hawaiian populations intro-

duced in the 1870s currently show signs of significant popu-

lation structure by island. Genetic isolation of insular

populations has been found in wide-ranging continental

molossid and vespertillonid bat species, with open-water

crossings between islands being barriers to gene flow

(Salgueiro et al. 2008; Biollaz et al. 2010; Weyeneth et al.

2011; Speer et al. 2017).

Variation in echolocation-related genes in Hawaiian hoary

bats raise questions of evolutionary interest based on our cur-

rent findings. It is possible that shifts in allele frequency are

due to natural selection when bats colonized Hawai‘i, as they

encountered new vegetation, insect prey, climatic conditions,

and reduced competition from only one other sympatric bat

species. We found interesting gene ontology during our anal-

yses of selective sweeps that may support phenotypic differ-

ences and adaptive evolution in Hawaiian bat populations.

Alterations in mandibular morphology have been docu-

mented in mice with mutations in Glypican-1 (Mian et al.

2017). Meanwhile, Laminin subunit gamma-1 was a gene

found to be associated with vision in a genome-wide study

of echolocating animals including bats (Parker et al. 2013).

Two genes associated with echolocation in bats, Cadherin 23

(Cdh23) and protocadherin 15 (Pcdh15), have varying levels of

polymorphism and striking protein-coding differences in our

island populations, presenting an interesting topic for further

study on the evolution of echolocation in Hawaiian hoary

bats.

The overall genomic changes and specific changes at im-

portant loci identified in this study may be, in part, associated

with the substantial behavioral, ecological, and morphological

differences between Hawaiian and northern hoary bats.

Hawaiian hoary bats are �45% smaller in body mass and

wing size than northern hoary bats and may have become

more generalist in their foraging and habitat preferences

(Jacobs 1996). Several studies have compared echolocation

characteristics and variation in northern and Hawaiian hoary

bat populations (Barclay et al. 1999), as well as foraging se-

lectivity and interspecific competition (Belwood and Fullard

1984; Poe 2007) and use of vision while hunting (Barclay

et al. 1999). Hawaiian hoary bats use a large range of echo-

location calls and can utilize higher frequencies than northern

hoary bats, possibly as a consequence of their smaller body

size. Flight activity studies on Hawaiian hoary bats, coupling

videography and acoustic recordings, indicate this species flies

silently without using echolocation in some contexts

(Gorresen et al. 2017). Jacobs (1996) hypothesized that

Hawaiian hoary bats experienced a “character release”

upon arrival in the Hawaiian islands, with no resource com-

petition offered by conspecific bat species. Thus, hoary bats

arriving in Hawai‘i could expand their foraging behavior to a

broader range of insect prey and habitats. However, S. keana,

the lava tube bat, occurred on all main Hawaiian Islands prior

to 0.32 Ma (Ziegler et al. 2016). Our findings indicate poten-

tial overlap of L. semotus ancestors with the now extinct

S. keana, was longer than estimated. It is unlikely that sym-

patry between only two bat species would have resulted in
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heavy competition, if insect prey and roost availability were

not limiting factors (Salinas-Ramos et al. 2020). Hawaiian

habitats likely provided year-round prey resources, and roost

preferences differed between bats, with S. keana inhabiting

lava tubes (Ziegler et al. 2016) whereas L. semotus utilized

trees and foliage. Jacobs also measured divergence in cranial

morphology, finding that Hawaiian hoary bats have propor-

tionally longer skulls, higher coronoid processes, increased

gape, and larger masseter muscles. This may have been an

adaptive response to the inclusion of a wider range of larger

insect prey beyond moths, including hard-bodied beetles.

Fatal collisions with wind turbines are a threat to popula-

tion viability for migratory tree bats, including hoary bats (Frick

et al. 2017), but population-level effects are unknown for the

endemic Hawaiian hoary bat. Managing anthropogenic

threats and aiding the recovery of this endangered species

across the island state of Hawai‘i requires information about

genetic variation, population size, and structure. Our study

demonstrates that among the islands of Hawai‘i, Maui, and

O‘ahu, bat populations are genetically distinct and may war-

rant classification into separate evolutionary significant units

(ESU). The bat population on O‘ahu can be noted as having

the highest number of unique, fixed SNPs, and lowest het-

erozygosity. The O‘ahu population also shows genomic

regions affected by putative selective sweeps, specifically non-

synonymous mutations in genes that may be under positive

natural selection.

The data presented here may not reflect recent changes in

Hawaiian hoary bat population genetic diversity due to hu-

man effects; however, this type of data is a valuable starting

point for future genetic monitoring of allelic diversity and

population trends (Schwartz et al. 2007; Allendorf et al.

2008). Discerning whether genotypic changes are due to nat-

ural selection or due to drift associated with founder events

may not be possible when limited to contemporary samples

from a single time period (Shultz et al. 2016). We caution the

use of diversity measures provided here to answer population

level questions, as the sample sizes of<10 bats per island are

insufficient for population size analyses. Ultimately, continued

sampling is needed across multiple individuals and time peri-

ods to address such questions about Hawaiian hoary bat ef-

fective population sizes on islands, their evolutionary past, and

population trajectories.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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