43 research outputs found

    Introducing the PRIDE Archive RESTful web services

    Get PDF
    ABSTRACT The PRIDE (PRoteomics IDEntifications) database is one of the world-leading public repositories of mass spectrometry (MS)-based proteomics data and it is a founding member of the ProteomeXchange Consortium of proteomics resources. In the original PRIDE database system, users could access data programmatically by accessing the web services provided by the PRIDE BioMart interface. New REST (REpresentational State Transfer) web services have been developed to serve the most popular functionality provided by BioMart (now discontinued due to data scalability issues) and address the data access requirements of the newly developed PRIDE Archive. Using the API (Application Programming Interface) it is now possible to programmatically query for and retrieve peptide and protein identifications, project and assay metadata and the originally submitted files. Searching and filtering is also possible by metadata information, such as sample details (e.g. species and tissues), instrumentation (mass spectrometer), keywords and other provided annotations. The PRIDE Archive web services were first made available in April 2014. The API has already been adopted by a few applications and standalone tools such as PeptideShaker, PRIDE Inspector, the Unipept web application and the Python-based BioServices package. This application is free and open to all users with no login requirement and can be accessed at http://www.ebi.ac.uk/pride/ws/archive/

    Complex Portal 2022:New curation frontiers

    Get PDF
    International audienceThe Complex Portal (www.ebi.ac.uk/complexportal) is a manually curated, encyclopaedic database of macromolecular complexes with known function from a range of model organisms. It summarizes complex composition, topology and function along with links to a large range of domain-specific resources (i.e. wwPDB, EMDB and Reactome). Since the last update in 2019, we have produced a first draft complexome for Escherichia coli, maintained and updated that of Saccharomyces cerevisiae, added over 40 coronavirus complexes and increased the human complexome to over 1100 complexes that include approximately 200 complexes that act as targets for viral proteins or are part of the immune system. The display of protein features in ComplexViewer has been improved and the participant table is now colour-coordinated with the nodes in ComplexViewer. Community collaboration has expanded, for example by contributing to an analysis of putative transcription cofactors and providing data accessible to semantic web tools through Wikidata which is now populated with manually curated Complex Portal content through a new bot. Our data license is now CC0 to encourage data reuse. Users are encouraged to get in touch, provide us with feedback and send curation requests through the ‘Support’ link

    The IntAct database:Efficient access to fine-grained molecular interaction data

    Get PDF
    The IntAct molecular interaction database (https://www.ebi.ac.uk/intact) is a curated resource of molecular interactions, derived from the scientific literature and from direct data depositions. As of August 2021, IntAct provides more than one million binary interactions, curated by twelve global partners of the International Molecular Exchange consortium, for which the IntAct database provides a shared curation and dissemination platform. The IMEx curation policy has always emphasised a fine-grained data and curation model, aiming to capture the relevant experimental detail essential for the interpretation of the provided molecular interaction data. Here, we present recent curation focus and progress, as well as a completely redeveloped website which presents IntAct data in a much more user-friendly and detailed way

    The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases

    Get PDF
    IntAct (freely available at http://www.ebi.ac.uk/intact) is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. IntAct has developed a sophisticated web-based curation tool, capable of supporting both IMEx- and MIMIx-level curation. This tool is now utilized by multiple additional curation teams, all of whom annotate data directly into the IntAct database. Members of the IntAct team supply appropriate levels of training, perform quality control on entries and take responsibility for long-term data maintenance. Recently, the MINT and IntAct databases decided to merge their separate efforts to make optimal use of limited developer resources and maximize the curation output. All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset. Both IntAct and MINT are active contributors to the IMEx consortium (http://www.imexconsortium.org

    Discovering and linking public omics data sets using the Omics Discovery Index.

    Get PDF
    Biomedical data are being produced at an unprecedented rate owing to the falling cost of experiments and wider access to genomics, transcriptomics, proteomics and metabolomics platforms1, 2. As a result, public deposition of omics data is on the increase. This presents new challenges, including finding ways to store, organize and access different types of biomedical data stored on different platforms. Here, we present the Omics Discovery Index (OmicsDI; http://www.omicsdi.org), an open-source platform that enables access, discovery and dissemination of omics data sets

    The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience.

    Get PDF
    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore