469 research outputs found

    Developing and paying for medicines for orphan indications in oncology: utilitarian regulation vs equitable care?

    Get PDF
    Despite ‘orphan drug' legislation, bringing new medicines for rare diseases to market and securing funding for their provision is sometimes both costly and problematic, even in the case of medicines for very rare ‘ultra orphan' oncological indications. In this paper difficulties surrounding the introduction of a new treatment for osteosarcoma exemplify the challenges that innovators can face. The implications of current policy debate on ‘value-based' medicines pricing in Europe, North America and elsewhere are also explored in the context of sustaining research into and facilitating cancer patient access to medicines for low-prevalence indications. Tensions exist between utilitarian strategies aimed at optimising the welfare of the majority in the society and minority-interest-focused approaches to equitable care provision. Current regulatory and pricing strategies should be revisited with the objective of facilitating fair and timely drug supply to patients without sacrificing safety or overall affordability. Failures effectively to tackle the problems considered here could undermine public interests in developing better therapies for cancer patients

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    Precision Measurement of The Most Distant Spectroscopically Confirmed Supernova Ia with the Hubble Space Telescope

    Get PDF
    We report the discovery of a redshift 1.71 supernova in the GOODS North field. The Hubble Space Telescope (HST) ACS spectrum has almost negligible contamination from the host or neighboring galaxies. Although the rest frame sampled range is too blue to include any Si ii line, a principal component analysis allows us to confirm it as a Type Ia supernova with 92% confidence. A recent serendipitous archival HST WFC3 grism spectrum contributed a key element of the confirmation by giving a host-galaxy redshift of 1.713 +/- 0.007. In addition to being the most distant SN Ia with spectroscopic confirmation, this is the most distant Ia with a precision color measurement. We present the ACS WFC and NICMOS 2 photometry and ACS and WFC3 spectroscopy. Our derived supernova distance is in agreement with the prediction of LambdaCDM.Comment: 13 pages, 6 figures, published in ApJ with updated analysi

    Dislocation interactions during low-temperature plasticity of olivine and their impact on the evolution of lithospheric strength

    Get PDF
    The strength of the lithosphere is typically modelled based on constitutive equations for steady-state flow. However, strain hardening may cause significant evolution of strength in the colder load-bearing portion of the lithosphere. Recent rheological data from low-temperature deformation experiments on olivine suggest that strain hardening occurs due to the presence of temperature-independent back stresses generated by long-range elastic interactions among dislocations. These interpretations provided the basis for a flow law that incorporates hardening by the development of back stress. Here, we test this dislocation-interaction hypothesis by examining the microstructures of olivine samples deformed plastically at room temperature either in a deformation-DIA apparatus at differential stresses of ≤4.3GPa or in a nanoindenter at applied contact stresses of ≥10.2GPa. High-angular resolution electron backscatter diffraction maps reveal the presence of geometrically necessary dislocations with densities commonly above 1014m−2 and intragranular heterogeneities in residual stress on the order of 1 GPa in both sets of samples. Scanning transmission electron micrographs reveal straight dislocations aligned in slip bands and interacting with dislocations of other types that act as obstacles. The resulting accumulations of dislocations in their slip planes, and associated stress heterogeneities, are consistent with strain hardening resulting from long-range back-stresses acting among dislocations and thereby support the form of the flow law for low-temperature plasticity. Based on these observations, we predict that back stresses among dislocations will impart significant mechanical anisotropy to deformed lithosphere by enhancing or reducing the effective stress. Therefore, strain history, with associated microstructural and micromechanical evolution, is an important consideration for models of lithospheric strength. The microstructural observations also provide new criteria for identifying the operation of back-stress induced strain hardening in natural samples and therefore provide a means to test the applicability of the flow law for low-temperature plasticity.This research was supported by Natural Environment Research Council grants NE/M000966/1 to LNH, AJW, and DW and 1710DG008/JC4 to LNH and AJW; European Plate Observing System Transnational Access grant EPOS-TNA-MSL 2018-022 to LNH; Advanced Photon Source General User Proposal 55176 to LNH, DLG, and WBD; and National Science Foundation Awards EAR-1361319 to WBD, EAR-1625032 to JMW, and EAR-1806791 to KMK

    Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run

    Get PDF
    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory’s (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20–1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα;ΘðfÞ < ð0.1–56Þ × 10−8 erg cm−2 s−1 Hz−1ðf=25 HzÞα−1 depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ωðf; ΘÞ < ð0.39–7.6Þ × 10−8 sr−1ðf=25 HzÞα depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0 < ð6.7; 5.5; and 7.0Þ × 10−25, respectively, at the most sensitive detector frequencies between 130–175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case

    Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Get PDF
    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
    corecore