62 research outputs found

    One-dimensional disordered photonic structures with two or more materials

    Full text link
    Here we would like to discuss the light transmission modulation by periodic and disordered one dimensional (1D) photonic structures. In particular, we will present some theoretical and experimental findings highlighting the peculiar optical properties of: i) 1D periodic and disordered photonic structures made with two or more materials; ii) 1D photonic structures in which the homogeneity or the aggregation of the high refractive index layers is controlled. We will focus also on the fabrication aspects of these structures.Comment: 6 pages, 4 figure

    SnO2 based glasses : A viable photonic system

    Get PDF
    The present work focuses on sol-gel derived SnO2-based thin glass-ceramic films doped with Er3+ ions, fabricated by dipcoating technique. Our goal is to find a viable fabrication protocol to obtain them. Thin films with a variety of composition were synthesized and their structural, optical and spectroscopic properties were investigated. The FTIR spectra and X-ray diffraction patterns were used to characterize the structure of the thin films. The transparency of the thin film was tested by UV-Vis transmittance measurements. The energy transfer dynamic was investigated by time-resolved spectroscopy and photoluminescence measurements

    HVEM and CD160: Regulators of Immunopathology During Malaria Blood-Stage

    Get PDF
    CD8+ T cells are key players during infection with the malaria parasite Plasmodium berghei ANKA (PbA). While they cannot provide protection against blood-stage parasites, they can cause immunopathology, thus leading to the severe manifestation of cerebral malaria. Hence, the tight control of CD8+ T cell function is key in order to prevent fatal outcomes. One major mechanism to control CD8+ T cell activation, proliferation and effector function is the integration of co-inhibitory and co-stimulatory signals. In this study, we show that one such pathway, the HVEM-CD160 axis, significantly impacts CD8+ T cell regulation and thereby the incidence of cerebral malaria. Here, we show that the co-stimulatory molecule HVEM is indeed required to maintain CD8+ T effector populations during infection. Additionally, by generating a CD160−/− mouse line, we observe that the HVEM ligand CD160 counterbalances stimulatory signals in highly activated and cytotoxic CD8+ T effector cells, thereby restricting immunopathology. Importantly, CD160 is also induced on cytotoxic CD8+ T cells during acute Plasmodium falciparum malaria in humans. In conclusion, CD160 is specifically expressed on highly activated CD8+ T effector cells that are harmful during the blood-stage of malaria

    Synthesis, structure and spectroscopic properties of luminescent GdVO4:Dy3+ and DyVO4 particles

    Get PDF
    Part of this research was done during visit of D.J. to IFN-CNR CSMFO Lab. and FBK Photonics Unit, Povo-Trento, Italy, in the framework of the STSM (Grant No. 38223) from the project: COST Action MP 1401 Advanced Fibre Laser and Coherent Source as tools for Society, Manufacturing and Lifescience” (2014e2018). The authors from Vinca Institute of Nuclear Sciences acknowledge the financial support of the Ministry of Education, Science and Tech-nological Development of the Republic of Serbia (Project No: 45020 and 172056). L.T.N. Tran acknowledges the scholarship of the Ministry of Education and Training, Vietnam International Education Development. T. G. acknowledges the ERDF PostDoc project No. 1.1.1.2/VIAA/1/16/215 (1.1.1.2/16/I/001).In this work, we focused on the syntheses, structure and spectroscopic properties of GdVO4:Dy3+ and DyVO4 (nano)particles of different sizes and shapes (spherical nanoparticles of 2 nm, 4 nm, and 20 nm in size, nanorods with a few nanometers in diameter and up to 10–20 nm in length and microparticles of 1–8 μm) obtained by four synthetic methods. The size effect on the structure, Raman active modes, and photoluminescence emission intensities was analyzed by X-ray diffraction, Raman and photoluminescence spectroscopy, scanning and transmission electron microscopy, and diffuse reflection spectroscopy. All X-ray diffraction patterns clearly indicated presence of a single tetragonal zircon-type phase; absence of impurity phases indicate that the dopant Dy3+ ions were successfully and uniformly incorporated into the GdVO4 host lattice due to the equal valence and similar ionic radii. Micro-Raman measurements support the XRD measurements and showed Raman-active modes of the REVO4 systems (RE = Gd, Dy). The difference between the two hosts in the diffuse reflectance spectra was observed and it could be attributed to more effective Gd3+ ions on the charge transfer bands and different polarization (compared to bulk material) in smaller nanoparticles. Photoluminescence spectroscopy showed several bands in the visible and near-infrared regions which can be exclusively attributed to the f–f transitions of Dy3+ ions.STSM (Grant No. 38223); COST Action MP 1401 (2014e2018); Ministry of Education, Science and Tech-nological Development of the Republic of Serbia (Project No: 45020 and 172056); ERDF PostDoc project No. 1.1.1.2/VIAA/1/16/215 (1.1.1.2/16/I/001); Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Ag-Sensitized Yb3+ Emission in Glass-Ceramics

    Get PDF
    Rare earth doped materials play a very important role in the development of many photonic devices, such as optical amplifiers and lasers, frequency converters, solar concentrators, up to quantum information storage devices. Among the rare earth ions, ytterbium is certainly one of the most frequently investigated and employed. The absorption and emission properties of Yb3+ ions are related to transitions between the two energy levels 2F7/2 (ground state) and 2F5/2 (excited state), involving photon energies around 1.26 eV (980 nm). Therefore, Yb3+ cannot directly absorb UV or visible light, and it is often used in combination with other rare earth ions like Pr3+, Tm3+, and Tb3+, which act as energy transfer centres. Nevertheless, even in those co-doped materials, the absorption bandwidth can be limited, and the cross section is small. In this paper, we report a broadband and efficient energy transfer process between Ag dimers/multimers and Yb3+ ions, which results in a strong PL emission around 980 nm under UV light excitation. Silica-zirconia (70% SiO2-30% ZrO2) glass-ceramic films doped by 4 mol.% Yb3+ ions and an additional 5 mol.% of Na2O were prepared by sol-gel synthesis followed by a thermal annealing at 1000 °C. Ag introduction was then obtained by ion-exchange in a molten salt bath and the samples were subsequently annealed in air at 430 °C to induce the migration and aggregation of the metal. The structural, compositional, and optical properties were investigated, providing evidence for efficient broadband sensitization of the rare earth ions by energy transfer from Ag dimers/multimers, which could have important applications in different fields, such as PV solar cells and light-emitting near-infrared (NIR) devices

    Coherent emission from fully Er 3+ doped monolithic 1-D dielectric microcavity fabricated by rf-sputtering

    Get PDF
    All Er3+ doped dielectric 1-D microcavity was fabricated by rf sputtering technique. The microcavity was constituted by half wave Er3+ doped SiO2 active layer inserted between two Bragg reflectors consists of ten pairs of SiO2/TiO2 layers also doped with Er3+ ions. The scanning electron microscopy was used to check the morphology of the structure. Transmission measurements confirm the third and first order cavity resonance at 530 nm and 1560 nm, respectively. The photoluminescence measurements were obtained by optically exciting at the third order cavity resonance using 514.5 nm Ar+ laser with an excitation angle of 30°. The Full Width at Half Maximum of the emission peak at 1560 nm decrease with the pump power until the spectral resolution of the detection system of ∼1.0 nm. Moreover, the emission intensity presents a non-linear behavior with the pump power and a threshold at about 24 mW was observed with saturation of the signal at above 185 mW of pump power

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore