60 research outputs found

    Effects of robotic-assisted laparoscopic prostatectomy on surgical pathology specimens

    Get PDF
    Background Robotic-assisted laparoscopic prostatectomy (RALP) has greatly changed clinical management of prostate cancer. It is important for pathologists and urologists to compare RALP with conventional open radical retropubic prostatectomy (RRP), and evaluate their effects on surgical pathology specimens. Methods We retrospectively reviewed and statistically analyzed 262 consecutive RALP (n = 182) and RRP (n = 80) procedures performed in our institution from 2007 to 2010. From these, 49 RALP and 33 RRP cases were randomly selected for additional microscopic examination to analyze the degree of capsular incision and the amount of residual prostate surface adipose tissue. Results Positive surgical margins were present in 28.6% RALP and 57.5% RRP cases, a statistically significant difference. In patients with stage T2c tumors, which represent 61.2% RALP and 63.8% RRP patients, the positive surgical margin rate was 24.1% in the RALP group and 58.8% in the RRP group (statistically significant difference). For other pathologic stages, the differences in positive margins between RALP and RRP groups were not statistically significant. The incidence of positive surgical margins after RALP was related to higher tumor stage, higher Gleason score, higher tumor volume and lower prostate weight, but was not related to the surgeons performing the procedure. When compared with RRP, RALP also caused less severe prostatic capsular incision and maintained larger amounts of residual surface adipose tissue in prostatectomy specimens. Conclusions In this study RALP showed a statistically significant lower positive surgical margin rate than RRP. Analysis of capsular incision and amount of prostatic surface residual adipose tissue suggested that RALP caused less prostatic capsular damage than RRP

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Papstwahl und Ausgleich

    No full text

    Problems & Proposals for Time & Space Profiling of Functional Programs

    No full text
    corecore