9 research outputs found

    The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS)

    Get PDF
    Objective: To develop and update evidence-based and consensus-based guidelines on laparoscopic and robotic pancreatic surgery. Summary Background Data: Minimally invasive pancreatic surgery (MIPS), including laparoscopic and robotic surgery, is complex and technically demanding. Minimizing the risk for patients requires stringent, evidence-based guidelines. Since the International Miami Guidelines on MIPS in 2019, new developments and key publications have been reported, necessitating an update. Methods: Evidence-based guidelines on 22 topics in 8 domains were proposed: terminology, indications, patients, procedures, surgical techniques and instrumentation, assessment tools, implementation and training, and artificial intelligence. The Brescia Internationally Validated European Guidelines on Minimally Invasive Pancreatic Surgery (EGUMIPS, September 2022) used the Scottish Intercollegiate Guidelines Network (SIGN) methodology to assess the evidence and develop guideline recommendations, the Delphi method to establish consensus on the recommendations among the Expert Committee, and the AGREE II-GRS tool for guideline quality assessment and external validation by a Validation Committee. Results: Overall, 27 European experts, 6 international experts, 22 international Validation Committee members, 11 Jury Committee members, 18 Research Committee members, and 121 registered attendees of the 2-day meeting were involved in the development and validation of the guidelines. In total, 98 recommendations were developed, including 33 on laparoscopic, 34 on robotic, and 31 on general MIPS, covering 22 topics in 8 domains. Out of 98 recommendations, 97 reached at least 80% consensus among the experts and congress attendees, and all recommendations were externally validated by the Validation Committee. Conclusions: The EGUMIPS evidence-based guidelines on laparoscopic and robotic MIPS can be applied in current clinical practice to provide guidance to patients, surgeons, policy-makers, and medical societies.</p

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Inventory, distribution and topographic features of rock glaciers in the southern region of the Eastern Italian Alps (Trentino)

    No full text
    A GIS-based rock glacier inventory was conducted in a region of about 6200 km2 located in the southern sector of the Eastern Italian Alps (Trentino). The rock glaciers cover a total area of 33.3 km2, which is more than 1.4% of the area located above 1600 m a.s.l. and is comparable to the area covered by glaciers (38.3 km2 in 2003). The rock glaciers are located at a mean elevation of 2282 ±289 m a.s.l. and are distributed in an elevation range of about 1440 m. Considering separately the two classes of intact and relict (i.e. with no permafrost) rock glaciers, the mean elevation is 2632 ±205 m a.s.l. and 2169 ±211 m a.s.l. respectively. Relict rock glaciers are found between 1650 and 2700 m a.s.l., whereas above 2800 m a.s.l. only intact rock glaciers exist. The mean aspect of all the inventoried rock glaciers is 43°. A dominant northern orientation does not emerge in the class of the intact forms, whereas the relict rock glaciers show a predominant northern orientation with a mean aspect of about 30°. According to the mean elevation of the intact rock glaciers, the lower boundary of permafrost in the studied region would be located at an elevation of approximately 2630 m a.s.l. This boundary varies significantly when considering the different exposures, and ranges from about 2510 m a.s.l. on north-facing slopes to about 2690 m a.s.l. on those exposed to the south. The lower boundary of permafrost existence in the past, as marked by the mean altitude of the relict rock glaciers, was located about 450 m lower than the modern one with variations included in a range of 230 m according to the exposure. This provides a rough estimation of the shift in elevation of the lower permafrost boundary between the present-day and the time when the relict rock glaciers were active. Accordingly, a MAAT increase of about 2.9°C can be calculated applying a standard vertical lapse rate (0.65°C/100 m) to this shift

    Humusica 1, article 4: Terrestrial humus systems and forms - Specific terms and diagnostic horizons

    No full text
    Knowledge of a little number of specific terms is necessary to investigate and describe humipedons. This "new vocabulary" allows individuating and circumscribing particular diagnostic horizons, which are the fundamental bricks of the humipedon. Few "components" defined by specific terms characterize a specific "humipedon horizon"; few "humipedon horizons" compose a given "humus form" and some similar "humus forms" are grouped in a functional "humus system". In this article, specific terms and humus horizons are listed and explained one by one. Field difficulties are illustrated and resolved. The aim of the article is to present in a manner as simple as possible how to distinguish in the field the soil structures allowing a morpho-functional classification of terrestrial (aerated, not submerged) humipedons. \ua9 2017 Elsevier B.V

    Climate Control of Terrestrial Carbon Exchange across Biomes and Continents

    No full text
    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predicate future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks1, 2. However, knowledge of even the broad relationships between climate and terrestrial CO2 exchange with the atmosphere on yearly to decadal scales remains highly uncertain. Here we present data describing net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 132 unique sites including various ecosystems over 6 continents with a total of 583 site-years. With respect to controlling factors we find two distinct groupings of sites: (1) a temperature-limited group where NEE has an exponential relationship with mean annual temperature; and (2) a dryness-limited group where NEE has an inverse exponential relationship with the dryness index7. A strong latitudinal dependence emerges, with 92% of the temperature-limited sites located above 42oN, and 77% of the dryness-limited sites located below 42oN. The sensitivity of NEE to mean annual temperature breaks down at a threshold value of ~16oC, above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence. Our findings suggest that (1) net ecosystem carbon exchange is highly limited by mean annual temperature at mid- and high-latitudes, and (2) net ecosystem carbon exchange is highly limited by dryness at low latitudes.JRC.H.2-Air and Climat

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    No full text
    Abstract The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible

    Reprints and permissions:

    Get PDF
    sagepub.co.uk/journalsPermissions.na
    corecore