35 research outputs found

    Association between energy balance-related factors and clinical outcomes in patients with ovarian cancer: A systematic review and meta-analysis

    Get PDF
    Background: This systematic review and meta-analysis synthesized evidence in patients with ovarian cancer at diagnosis and/or during first-line treatment on; (i) the association of body weight, body composition, diet, exercise, sedentary behavior, or physical fitness with clinical outcomes; and (ii) the effect of exercise and/or dietary interventions. Methods: Risk of bias assessments and best-evidence syntheses were completed. Meta-analyses were performed when ≥ 3 papers presented point estimates and variability measures of associations or effects. Results: Body mass index (BMI) at diagnosis was not significantly associated with survival. Although the following trends were not supported by the best-evidence syntheses, the meta-analyses revealed that a higher BMI was associated with a higher risk of post-surgical complications (n = 5, HR: 1.63, 95 % CI: 1.06 – 2.51, p = 0.030), a higher muscle mass was associated with a better progression-free survival (n = 3, HR: 1.41, 95 % CI: 1.04 – 1.91, p = 0.030) and a higher muscle density was associated with a better overall survival (n = 3, HR: 2.12, 95 % CI: 1.62 – 2.79, p \u3c 0.001). Muscle measures were not significantly associated with surgical or chemotherapy-related outcomes. Conclusions: The prognostic value of baseline BMI for clinical outcomes is limited, but muscle mass and density may have more prognostic potential. High-quality studies with comprehensive reporting of results are required to improve our understanding of the prognostic value of body composition measures for clinical outcomes. Systematic review registration number: PROSPERO identifier CRD42020163058

    MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation

    Full text link
    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Supplementation with Whey Protein, but Not Pea Protein, Reduces Muscle Damage Following Long-Distance Walking in Older Adults

    No full text
    Background: Adequate animal-based protein intake can attenuate exercise induced-muscle damage (EIMD) in young adults. We examined the effects of 13 days plant-based (pea) protein supplementation compared to whey protein and placebo on EIMD in active older adults. Methods: 47 Physically active older adults (60+ years) were randomly allocated to the following groups: (I) whey protein (25 g/day), (II) pea protein (25 g/day) or (III) iso-caloric placebo. Blood concentrations of creatine kinase (CK) and lactate dehydrogenase (LDH), and skeletal muscle mass, muscle strength and muscle soreness were measured prior to and 24 h, 48 h and 72 h after a long-distance walking bout (20–30 km). Results: Participants walked 20–30 km and 2 dropped out, leaving n = 15 per subgroup. The whey group showed a significant attenuation of the increase in EIMD at 24 h post-exercise compared to the pea and placebo group (CK concentration: 175 ± 90 versus 300 ± 309 versus 330 ± 165, p = p p-values > 0.05). Conclusions: Thirteen days of pea protein supplementation (25 g/day) does not attenuate EIMD in older adults following a single bout of prolonged walking exercise, whereas the whey protein supplementation group showed significantly lower post-exercise CK concentrations

    Association between Energy Balance-Related Factors and Clinical Outcomes in Patients with Ovarian Cancer: A Systematic Review and Meta-Analysis

    No full text
    Background: This systematic review and meta-analysis synthesized evidence in patients with ovarian cancer at diagnosis and/or during first-line treatment on; (i) the association of body weight, body composition, diet, exercise, sedentary behavior, or physical fitness with clinical outcomes; and (ii) the effect of exercise and/or dietary interventions. Methods: Risk of bias assessments and best-evidence syntheses were completed. Meta-analyses were performed when ≥3 papers presented point estimates and variability measures of associations or effects. Results: Body mass index (BMI) at diagnosis was not significantly associated with survival. Although the following trends were not supported by the best-evidence syntheses, the meta-analyses revealed that a higher BMI was associated with a higher risk of post-surgical complications (n = 5, HR: 1.63, 95% CI: 1.06–2.51, p = 0.030), a higher muscle mass was associated with a better progression-free survival (n = 3, HR: 1.41, 95% CI: 1.04–1.91, p = 0.030) and a higher muscle density was associated with a better overall survival (n = 3, HR: 2.12, 95% CI: 1.62–2.79, p < 0.001). Muscle measures were not significantly associated with surgical or chemotherapy-related outcomes. Conclusions: The prognostic value of baseline BMI for clinical outcomes is limited, but muscle mass and density may have more prognostic potential. High-quality studies with comprehensive reporting of results are required to improve our understanding of the prognostic value of body composition measures for clinical outcomes. Systematic review registration number: PROSPERO identifier CRD42020163058

    A positive neighborhood walkability is associated with a higher magnitude of leisure walking in adults upon COVID-19 restrictions: a longitudinal cohort study

    No full text
    Abstract Background Previous cross-sectional and longitudinal observational studies revealed positive relationships between contextual built environment components and walking behavior. Due to severe restrictions during COVID-19 pandemic lockdowns, physical activity was primarily performed within the immediate living area. Using this unique opportunity, we evaluated whether built environment components were associated with the magnitude of change in walking activity in adults during COVID-19 restrictions. Methods Data on self-reported demographic characteristics and walking behaviour were extracted from the prospective longitudinal Lifelines Cohort Study in the Netherlands of participants ≥ 18 years. For our analyses, we made use of the data acquired between 2014–2017 (n = 100,285). A fifth of the participants completed the questionnaires during COVID-19 restrictive policies in July 2021 (n = 20,806). Seven spatial components were calculated for a 500m and 1650m Euclidean buffer per postal code area in GIS: population density, retail and service destination density, land use mix, street connectivity, green space density, sidewalk density, and public transport stops. Additionally, the walkability index (WI) of these seven components was calculated. Using multivariable linear regression analyses, we analyzed the association between the WI (and separate components) and the change in leisure walking minutes/week. Included demographic variables were age, gender, BMI, education, net income, occupation status, household composition and the season in which the questionnaire was filled in. Results The average leisure walking time strongly increased by 127 min/week upon COVID-19 restrictions. All seven spatial components of the WI were significantly associated with an increase in leisure walking time; a 10% higher score in the individual spatial component was associated with 5 to 8 more minutes of leisure walking/week. Green space density at the 500m Euclidean buffer and side-walk density at the 1650m Euclidean buffer were associated with the highest increase in leisure walking time/week. Subgroup analysis revealed that the built environment showed its strongest impact on leisure walking time in participants not engaging in leisure walking before the COVID-19 pandemic, compared to participants who already engaged in leisure walking before the COVID-19 pandemic. Conclusions These results provide strong evidence that the built environment, corrected for individual-level characteristics, directly links to changes observed in leisure walking time during COVID-19 restrictions. Since this relation was strongest in those who did not engage in leisure walking before the COVID-19 pandemic, our results encourage new perspectives in health promotion and urban planning

    Tailoring of exercise and dietary interventions to adverse effects and existing comorbidities in patients with ovarian cancer receiving chemotherapy: a clinical vignettes study among expert physical therapists and dietitians

    No full text
    This study aims to capture the complex clinical reasoning process during tailoring of exercise and dietary interventions to adverse effects and comorbidities of patients with ovarian cancer receiving chemotherapy. Clinical vignettes were presented to expert physical therapists (n = 4) and dietitians (n = 3). Using the think aloud method, these experts were asked to verbalize their clinical reasoning on how they would tailor the intervention to adverse effects of ovarian cancer and its treatment and comorbidities. Clinical reasoning steps were categorized in questions raised to obtain additional information; anticipated answers; and actions to be taken. Questions and actions were labeled according to the evidence-based practice model. Questions to obtain additional information were frequently related to the patients’ capacities, safety or the etiology of health issues. Various hypothetical answers were proposed which led to different actions. Suggested actions by the experts included extensive monitoring of symptoms and parameters, specific adaptations to the exercise protocol and dietary-related patient education. Our study obtained insight into the complex process of clinical reasoning, in which a variety of patient-related variables are used to tailor interventions. This insight can be useful for description and fidelity assessment of interventions and training of healthcare professionals. The delivery of exercise and dietary programs is not a one-size fits all approach but involves a complex clinical reasoning process. Therefore, protocols should not only describe the intervention content, but also the strategy on how to tailor the intervention to individual adverse effects and pre-existing comorbidities. Education of healthcare professionals delivering the intervention is important as these professionals need to have good clinical reasoning skills to adequately tailor the intervention.</p

    MADNESS: a multiresolution, adaptive numerical environment for scientific simulation

    No full text
    MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics
    corecore