335 research outputs found

    In silico gene knockout prediction using a hybrid of Bat algorithm and minimization of metabolic adjustment

    Get PDF
    Microorganisms commonly produce many high-demand industrial products like fuels, food, vitamins, and other chemicals. Microbial strains are the strains of microorganisms, which can be optimized to improve their technological properties through metabolic engineering. Metabolic engineering is the process of overcoming cellular regulation in order to achieve a desired product or to generate a new product that the host cells do not usually need to produce. The prediction of genetic manipulations such as gene knockout is part of metabolic engineering. Gene knockout can be used to optimize the microbial strains, such as to maximize the production rate of chemicals of interest. Metabolic and genetic engineering is important in producing the chemicals of interest as, without them, the product yields of many microorganisms are normally low. As a result, the aim of this paper is to propose a combination of the Bat algorithm and the minimization of metabolic adjustment (BATMOMA) to predict which genes to knock out in order to increase the succinate and lactate production rates in Escherichia coli (E. coli)

    Predicting the catalytic sites of isopenicillin N synthase (IPNS) related non-haem iron-dependent oxygenases and oxidases (NHIDOX) through a structural superimposition and molecular docking approach

    Get PDF
    Isopenicillin N synthase (IPNS) related Non-haem iron-dependent oxygenases and oxidases (NHIDOX) demonstrated a striking structural conservativeness, even with low protein sequence homology. It is evident that these enzymes have an architecturally similar catalytic centre with active ligands lining the reactive pocket. Deacetoxycephalosporin C synthase (DAOCS), isopenicillin N synthase (IPNS), deacetylcephalosporin C synthase (DACS), clavaminate synthase 1 and 2 (CAS1 and 2) are important bacterial enzymes that catalyze the formation of β-lactam antibiotics belonging to this enzyme family. Most plant enzyme members within this subfamily namely flavonol synthase (FLS), leucoanthocyanidin dioxygenase (LDOX), anthocyanidin synthase (ANS), 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO), gibberellin 20-oxidase (G20O), desacetoxyvindoline-4-hydroxylase (D4H), flavanone 3β-hydroxylase (F3H), and hyoscyamine 6β-hydroxylase (H6H) are involved in catalyzing the biosyntheses of plant secondary metabolites. With the advancement of protein structural analysis software, it is possible to predict the catalytic sites of protein that shared a structural resemblance. By exploiting the superimposition model of DAOCS-IPNS, DAOCS-IPNS-CAS, G20O-LDOX, FLS-LDOX, ACCO-LDOX, D4H-LDOX, F3H-LDOX and H6H-LDOX model; a computational protocol for predicting the catalytic sites of proteins is now made available. This study shows that without the crystallized or nuclear magnetic resonance (NMR) structures of most NHIDOX enzyme, the plausible catalytic sites of protein can be forecasted using this structural bioinformatics approach.Keywords: Enzyme, catalytic sites, isopenicillin N synthase, ligand

    Extremely rapid up-and-down motions of island arc crust during arc-continent collision

    Get PDF
    10 pagesMountain building and the rock cycle often involve large vertical crustal motions, but their rates and timescales in unmetamorphosed rocks remain poorly understood. We utilize high-resolution magneto-biostratigraphy and backstripping analysis of marine deposits in an active arc-continent suture zone of eastern Taiwan to document short cycles of vertical crustal oscillations. A basal unconformity formed on Miocene volcanic arc crust in an uplifting forebulge starting ~6 Ma, followed by rapid foredeep subsidence at 2.3–3.2 mm yr−1 (~3.4–0.5 Ma) in response to oceanward-migrating flexural wave. Since ~0.8–0.5 Ma, arc crust has undergone extremely rapid (~9.0–14.4 mm yr−1) uplift to form the modern Coastal Range during transpressional strain. The northern sector may have recently entered another phase of subsidence related to a subduction polarity reversal. These transient vertical crustal motions are under-detected by thermochronologic methods, but are likely characteristic of continental growth by arc accretion over geologic timescales

    Baseline characteristics of participants in the Pre-Diabetes Interventions and Continued Tracking to Ease-out Diabetes (Pre-DICTED) Program

    Get PDF
    OBJECTIVE: The Pre-Diabetes Interventions and Continued Tracking to Ease-out Diabetes (Pre-DICTED) Program is a diabetes prevention trial comparing the diabetes conversion rate at 3 years between the intervention group, which receives the incentivized lifestyle intervention program with stepwise addition of metformin, and the control group, which receives the standard of care. We describe the baseline characteristics and compare Pre-DICTED participants with other diabetes prevention trials cohort. RESEARCH DESIGN AND METHODS: Participants were aged between 21 and 64 years, overweight (body mass index (BMI) ≥23.0 kg/m2), and had pre-diabetes (impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT)). RESULTS: A total of 751 participants (53.1% women) were randomized. At baseline, mean (SD) age was 52.5 (8.5) years and mean BMI (SD) was 29.0 (4.6) kg/m2. Twenty-three per cent had both IFG and IGT, 63.9% had isolated IGT, and 13.3% had isolated IFG. Ethnic Asian Indian participants were more likely to report a family history of diabetes and had a higher waist circumference, compared with Chinese and Malay participants. Women were less likely than men to meet the physical activity recommendations (≥150 min of moderate-intensity physical activity per week), and dietary intake varied with both sex and ethnicity. Compared with other Asian diabetes prevention studies, the Pre-DICTED cohort had a higher mean age and BMI. CONCLUSION: The Pre-DICTED cohort represents subjects at high risk of diabetes conversion. The study will evaluate the effectiveness of a community-based incentivized lifestyle intervention program in an urban Asian context.Peer reviewe

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Electroweak production of two jets in association with a Z boson in proton-proton collisions root s =13 TeV

    Get PDF
    A measurement of the electroweak (EW) production of two jets in association with a Z boson in proton-proton collisions at root s = 13 TeV is presented, based on data recorded in 2016 by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb(-1). The measurement is performed in the lljj final state with l including electrons and muons, and the jets j corresponding to the quarks produced in the hard interaction. The measured cross section in a kinematic region defined by invariant masses m(ll) > 50 GeV, m(jj) > 120 GeV, and transverse momenta P-Tj > 25 GeV is sigma(EW) (lljj) = 534 +/- 20 (stat) fb (syst) fb, in agreement with leading-order standard model predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. No evidence is found and limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -2.6 <cwww/Lambda(2) <2.6 TeV-2 and -8.4 <cw/Lambda(2) <10.1 TeV-2. The additional jet activity of events in a signal-enriched region is also studied, and the measurements are in agreement with predictions.Peer reviewe
    corecore