144 research outputs found

    Analysis on relationship between extreme pathways and correlated reaction sets

    Get PDF
    Background: Constraint-based modeling of reconstructed genome-scale metabolic networks has been successfully applied on several microorganisms. In constraint-based modeling, in order to characterize all allowable phenotypes, network-based pathways, such as extreme pathways and elementary flux modes, are defined. However, as the scale of metabolic network rises, the number of extreme pathways and elementary flux modes increases exponentially. Uniform random sampling solves this problem to some extent to study the contents of the available phenotypes. After uniform random sampling, correlated reaction sets can be identified by the dependencies between reactions derived from sample phenotypes. In this paper, we study the relationship between extreme pathways and correlated reaction sets.Results: Correlated reaction sets are identified for E. coli core, red blood cell and Saccharomyces cerevisiae metabolic networks respectively. All extreme pathways are enumerated for the former two metabolic networks. As for Saccharomyces cerevisiae metabolic network, because of the large scale, we get a set of extreme pathways by sampling the whole extreme pathway space. In most cases, an extreme pathway covers a correlated reaction set in an \u27all or none\u27 manner, which means either all reactions in a correlated reaction set or none is used by some extreme pathway. In rare cases, besides the \u27all or none\u27 manner, a correlated reaction set may be fully covered by combination of a few extreme pathways with related function, which may bring redundancy and flexibility to improve the survivability of a cell. In a word, extreme pathways show strong complementary relationship on usage of reactions in the same correlated reaction set.Conclusion: Both extreme pathways and correlated reaction sets are derived from the topology information of metabolic networks. The strong relationship between correlated reaction sets and extreme pathways suggests a possible mechanism: as a controllable unit, an extreme pathway is regulated by its corresponding correlated reaction sets, and a correlated reaction set is further regulated by the organism\u27s regulatory network.<br /

    Rabbit Meat—Production, Consumption and Consumers’ Attitudes and Behavior

    Get PDF
    Rabbit meat could play an important role in health, the rural economy, and sustainable development. Rabbit meat has excellent nutritional features, such as high protein content, low-fat content, and a high percentage of unsaturated fatty acids, low cholesterol and sodium levels. In addition, rabbit meat production contributes to maintaining economic activities in rural marginal areas. However, the consumption of rabbit meat is still limited due to several factors such as the higher cost of commercial food that is slowing down rabbits’ breeding. Socio-demographic characteristics, attitudes, and nationality of consumers influence the demand and consumption of rabbit meat. The social and economic changes of the past years are leading to an increased interest in rabbit meat products with convenience characteristics. Consumers are also increasingly paying attention to animal husbandry methods for health concerns and ethical reasons. This paper presents an overview of rabbit meat focusing on production, nutritional composition, consumers’ preferences, and marketing. The review proposes strategies that, coupled with information campaigns could improve consumers’ knowledge of the positive characteristics of rabbit meat, which would contribute to the market development

    Fast prediction of compressor flow field in nuclear power system based on proper orthogonal decomposition and deep learning

    Get PDF
    Research and development on digital twins of nuclear power systems has focused on high-precision real-time simulation and the prediction of local complex three-dimensional fluid dynamics. Traditional computational fluid dynamics (CFD) methods cannot take into consideration the efficiency and accuracy of fluid dynamics. In this study, a fast-flow field-prediction framework based on proper orthogonal decomposition (POD) and deep learning is proposed. Compressed data containing the original flow field information are obtained using POD and deep neural network (DNN) is used to construct the POD-DNN flow field reduction model to achieve fast flow field prediction. The calculation accuracy and speed of the reduced-order model are analyzed in detail, considering the flow field of the nuclear compressor and key flow equipment of the nuclear power system as objects. The results show that the average relative deviation of the POD-DNN is &lt;10% and calculation time is &lt;1% when compared to those of CFD. This research shows that the high-fidelity model constructed using model reduction and deep learning is a feasible method for the realization of digital twins of the nuclear power system in engineering

    Ferromagnetic-antiferromagnetic coexisting ground states and exchange bias effects in MnBi4Te7\bf{MnBi_4Te_7} and MnBi6Te10\bf{MnBi_6Te_{10}}

    Full text link
    Natural superlattice structures (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2,...), in which magnetic MnBi2Te4\rm{MnBi_2Te_4} layers are separated by nonmagnetic Bi2Te3\rm{Bi_2Te_3} layers, hold band topology, magnetism and reduced interlayer coupling, providing a promising platform for the realization of exotic topological quantum states. However, their magnetism in the two-dimensional limit, which is crucial for further exploration of quantum phenomena, remains elusive. Here, complex ferromagnetic (FM)-antiferromagnetic (AFM) coexisting ground states that persist up to the 2-septuple layers (SLs) limit are observed and comprehensively investigated in MnBi4Te7\rm{MnBi_4Te_7} (nn = 1) and MnBi6Te10\rm{MnBi_6Te_{10}} (nn = 2). The ubiquitous Mn-Bi site mixing modifies or even changes the sign of the subtle inter-SL magnetic interactions, yielding a spatially inhomogeneous interlayer coupling. Further, a tunable exchange bias effect is observed in (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2), arising from the coupling between the FM and AFM components in the ground state. Our work highlights a new approach toward the fine-tuning of magnetism and paves the way for further study of quantum phenomena in (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2,...) as well as their magnetic applications.Comment: 9 pages, 4 figure

    A novel hybrid energy system combined with solar-road and soil-regenerator: Dynamic model and operational performance

    Get PDF
    This document is the Accepted Manuscript version, made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). Under embargo until 26 November 2018. The final, definitive version of this article is available online at doi: https://doi.org/10.1016/j.enconman.2017.11.066.Solar roads are emergent and huge energy source in traffic domains. To improve the energy utilization efficiency of a solar road, a novel solar-road and soil-regenerator hybrid energy system in combination with conventional photovoltaic-thermal and soil heat storage technology was proposed. A mathematical model of the solar-road and soil-regenerator hybrid energy system was developed, validated, and applied to evaluate the thermal storage and power generation performance of the proposed system in cold regions. The results indicated that for critical thermal storage temperatures of 20, 30, and 40 °C, the proposed system decreased maximum photovoltaic cell temperatures by 24.09, 25.84, and 24.42 °C and increased electrical efficiencies by 6.85, 6.68, and 4.53%, respectively, compared with conventional solar roads. By storing heat in the soil and elevating soil temperatures, the proposed system also increased the average borehole wall temperatures by 2.93, 2.26, 1.87 °C. The proposed system produced overall energy efficiencies of 48.42, 55.47, and 66.58%, while conventional solar road efficiencies approximate 10.75%.Peer reviewe

    Variant rs9939609 in the FTO gene is associated with body mass index among Chinese children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fat-mass and obesity-associated (<it>FTO</it>) gene is a gene located in chromosome region 16q12.2. Genetic variants in <it>FTO </it>are associated with the obesity phenotype in European and Hispanic populations. However, this association still remains controversial in Asian population. We aimed to test the association of <it>FTO </it>genetic variants with obesity and obesity-related metabolic traits among children living in Beijing, China.</p> <p>Methods</p> <p>We genotyped <it>FTO </it>variants rs9939609 in 670 children (332 girls and 338 boys) aged 8-11 years living in Beijing, and analyzed its association with obesity and obesity-related metabolic traits. Overweight and obesity were defined by age- and sex-specific BMI reference for Chinese children. Obesity-related metabolic traits included fasting plasma glucose, lipid profiles, leptin, ghrelin, adiponectin and blood pressures.</p> <p>Results</p> <p>The frequency of rs9939609 A allele was 12.2%, which was 21.9% for the heterozygote and 1.2% for the homozygote of the A allele. The obesity prevalence among the carriers of AA/AT genotypes was significantly higher than that among those with TT genotype (36.4% <it>vs</it>. 22.6%, <it>P </it>= 0.004). Compared to the carrier of TT genotype, the likelihood of obesity was 1.79 (95% confidence interval (95% CI) 1.20-2.67, <it>P </it>= 0.004) for the carrier of AA/AT genotype, after adjustment of sex, age and puberty stages. The BMI Z-score of children with AA/AT genotype were significantly higher than that of their counterparts with the TT genotype (1.1 ± 0.1 <it>vs</it>. 0.8 ± 0.1, <it>P </it>= 0.02). The concentration of triglyceride was 1.03 ± 0.52 mmol/L among TT carrier and 1.13 ± 0.68 mmol/L among AA/AT carrier (<it>P </it>= 0.045). While, the concentrations of adiponectin were 18.0 ± 0.4 μg/ml among carriers of TT and 16.2 ± 0.7 μg/ml among subjects with AA/AT genotype (<it>P </it>= 0.03). The level of glucose marginally increased in the AA/AT genotype subjects (4.67 ± 0.40 mmol/L <it>vs</it>. 4.60 ± 0.35 mmol/L, <it>P </it>= 0.08). The evidence of association was reduced after adjustment for BMI (<it>P </it>= 0.38 for triglyceride, <it>P </it>= 0.20 for adiponectin and glucose). There was weak evidence of association between rs9939609 and other obesity-related metabolic traits including total cholesterol (3.92 ± 0.03 mmol/L <it>vs</it>. 4.02 ± 0.05 mmol/L, <it>P </it>= 0.10), insulin (2.69 ± 1.77 ng/ml <it>vs</it>. 3.12 ± 2.91 ng/ml, <it>P </it>= 0.14), and insulin resistance (HOMA-IR 0.56 ± 0.03 <it>vs</it>. 0.66 ± 0.05, <it>P </it>= 0.10).</p> <p>Conclusions</p> <p>Genetic variation in the <it>FTO </it>gene associates with obesity in Chinese children.</p

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore