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Abstract

Background: Constraint-based modeling of reconstructed genome-scale metabolic networks has been
successfully applied on several microorganisms. In constraint-based modeling, in order to characterize all
allowable phenotypes, network-based pathways, such as extreme pathways and elementary flux modes, are
defined. However, as the scale of metabolic network rises, the number of extreme pathways and
elementary flux modes increases exponentially. Uniform random sampling solves this problem to some
extent to study the contents of the available phenotypes. After uniform random sampling, correlated
reaction sets can be identified by the dependencies between reactions derived from sample phenotypes. In
this paper, we study the relationship between extreme pathways and correlated reaction sets.

Results: Correlated reaction sets are identified for E. coli core, red blood cell and Saccharomyces cerevisiae
metabolic networks respectively. All extreme pathways are enumerated for the former two metabolic
networks. As for Saccharomyces cerevisiae metabolic network, because of the large scale, we get a set of
extreme pathways by sampling the whole extreme pathway space. In most cases, an extreme pathway
covers a correlated reaction set in an 'all or none' manner, which means either all reactions in a correlated
reaction set or none is used by some extreme pathway. In rare cases, besides the ‘all or none' manner, a
correlated reaction set may be fully covered by combination of a few extreme pathways with related
function, which may bring redundancy and flexibility to improve the survivability of a cell. In a word,
extreme pathways show strong complementary relationship on usage of reactions in the same correlated
reaction set.

Conclusion: Both extreme pathways and correlated reaction sets are derived from the topology
information of metabolic networks. The strong relationship between correlated reaction sets and extreme
pathways suggests a possible mechanism: as a controllable unit, an extreme pathway is regulated by its
corresponding correlated reaction sets, and a correlated reaction set is further regulated by the organism's
regulatory network.
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Background

In the past decades, genome-scale metabolic networks
capable of simulating growth have been reconstructed for
about twenty organisms [1]. A framework for constraint-
based reconstruction and analysis (COBRA) has been devel-
oped to model and simulate the steady states of metabolic
networks [2-4]. As reviewed in the literature [5], COBRA
has been successfully applied to studying the possible
phenotypes. Thus, it has attracted many attentions and
gets rapid progress.

The COBRA framework represents a metabolic network as
a stoichiometric matrix S. With the homeostatic-steady-
state hypothesis and fluxes boundaries, all allowable
steady-state flux distributions are limited in a space which
can be represented as

min max :
Sv=0, v"™ <y, <v™, i=1,..,n (1)

where §,, , ,is the stoichiometric matrix for a network con-
sisting of m metabolites and n fluxes and v, , , is a vector
of the flux levels through each reaction in the system [6].

Given the reversibility of reactions, an internal reversible
reaction can be decoupled into two separate reactions for
the forward and reverse directions separately. It means all
fluxes should take a non-negative value and the solution
space is now a convex polyhedral cone in high-dimen-
sional space [6,7]. This convex cone can be spanned by a
set of extreme pathways (ExPa), (p%, i=1, ..., k) [8,9]. Every
possible steady-state flux distribution in the solution
space may therefore be represented as a non-negative
combination of extreme pathways (ExPa):

k
V=Zaipi, a; 20, Vi (2)
i=1

Extreme pathways (ExPa) have the following properties
which make them biologically meaningful [10,11]:

1. The ExPa set of a given network is unique.
2. Each ExPa uses least reactions to be a functional unit.

3. The ExPa set is systemically independent which means
an ExPa can't be decomposed into a non-negative combi-
nation of the remaining ExPas.

A similar network-based pathway definition as ExPa is ele-
mentary flux modes (EM) [12-14]. The algorithm for ele-
mentary flux modes (EM) treats internal reversible reactions
differently from that for ExPas. Actually, ExPa set is a sys-
temically independent subset of elementary flux modes
(EM) and each EM can be represented by a non-negative
combination of ExPas. The relationship and difference
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between ExPa and EM have been studied and articulated
in literatures [10,15].

ExPas and EMs lead to a systems view of network proper-
ties [16] and they also provide a promising way to under-
stand network functionality, robustness as well as
regulation [17,18]. However, the number of ExPas for a
reaction network grows exponentially with network size
which makes the use of ExPas for large-scale networks
computationally difficult [19,20].

A rapid and scalable method to quantitatively characterize
all allowable phenotypes of genome-scale networks is
uniform random sampling [21]. It studies the contents of
the available phenotypes by sampling the points in the
solution space. The set of flux distributions obtained from
sampling can be analyzed to measure the pairwise corre-
lation coefficients between all reaction fluxes and can be
further used to define correlated reaction sets (CoSet). Cor-
related reaction sets (CoSet) are unbiased, condition-
dependent definitions of modules in metabolic networks
in which all the reactions have to be co-utilized in precise
stoichiometric ratios [22]. It means the fluxes of the reac-
tions in the same correlated reaction sets (CoSet) go up or
down together in fixed ratios. We may think about
whether CoSets provide clues about regulated procedures
of a metabolic network.

Both ExPas and CoSets are determined by the topology of
a metabolic network. Although lots of analyses were done
on them separately [23-25], few attention has been paid
to the relationship between them. Here, our aim is to
reveal the relationship between ExPas and CoSets. We
select Escherichia coli core metabolic network, human red
blood cell metabolic network and Saccharomyces cerevisiae
metabolic network as examples to start our research.

Results and discussion

Escherichia coli core metabolic network

We use the E. coli core model published on the web site of
UCSD's systems biology research group. It is "a condensed
version of the genome-scale E. coli reconstruction and
contains central metabolism reactions" [26]. Details of
this model can also be found in a published book [27].
The network contains 62 internal reactions, 14 exchange
reactions and a biomass objective function.

The computation of the extreme pathways for E. coli core
model results in 7784 ExPas, in which 7748 are type I or
IT ExPas and 36 are type III ExPas (Calculation and classi-
fication of ExPas are discussed in Methods section). The
type I and II ExPas will be focused on herein and the rea-
son for neglecting type III ExPas will be explained in
Methods section. Twenty CoSets are identified on this net-
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Table I: CoSets of E. coli core model.

CoSet ID CoSet Size Reactions
| 4 ACKr, ACt2r, EX_ac(e), PTAr
2 3 G6PDH2r, GND, PGL
3 3 EX_for(e), FORt, PFL
4 3 D_LACt2, EX_lac_D(e), LDH_D
5 3 CYTBD, EX_o2(e), O2t
6 3 ADHEr, ETOHt2r, EX_etoh(e)
7 2 TALA, TKTI
8 2 ICL, MALS
9 2 GAPD, PGK
10 2 FUM, SUCD4
I 2 FBA, TPI
12 2 EX_pyr(e), PYRt2r
13 2 EX_h2o(e), H20t
14 2 EX_glc(e), GLCpts
15 2 ENO, PGM
16 2 CO2t, EX_co2(e)
17 2 AKGt2r, EX_akg(e)
18 2 AKGDH, SUCOAS
19 2 ADKI, PPS
20 2 ACONT, CS

This table lists all CoSets of E. coli core model. We give each CoSet
an ID and list it in the First column. We list CoSet size and reactions
it contained in the second and third column. Reaction names are in
abbreviated form. The abbreviation list is in table 7 and additional file
1.

work based on pairwise correlation coefficients between
all reaction fluxes and listed in table 1.

For each CoSet C;, we check how many type I and II ExPas
use k reactions in Cj, where k ranges from zero to the size
of C;. The result is shown in table 2. Taking CoSet 3 as an
example, from table 1 and 2, we can find that 3 reactions
("EX_for(e), FORt, PFL') belong to CoSet 3. Among all the
type I and II ExPas, 5026 of them use all of these 3 reac-
tions and 2722 use none of them. No ExPa uses one or
two reactions. It is clear that each ExPa of E. coli core
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model covers in each CoSet in an 'all or none' manner. We
also calculate, for each ExPa p, the ratio of reactions in
any CoSet which is fully covered by pito all reactions in pi.
The distribution of the ratios is shown in Figure 1. Each
ExPa of E. coli core model covers at least one CoSet. The
coverage rates are higher than 40% which implies that
ExPas are under well control of CoSets.

Human red blood cell metabolic network

Human red blood cell (RBC) metabolic network has been
well reconstructed and simulated [28-31]. The RBC model
consists 39 metabolites, 32 internal metabolic reactions
(See additional file 2) as well as 19 exchange fluxes (Fig-
ure 2) [25].

There are 55 ExPas calculated from the stoichiometric
matrix of RBC model, among which 39 are type I or II
ExPas and the others are type III ExPas. We focus on type
I and II ExPas only. Type I and II ExPas are described in
additional file 2. Eight CoSets are identified on RBC
model. All CoSets are listed in table 3. The CoSets of RBC
show agreement with the currently known regulatory
structure [32]. There are 12 reactions regulated by inhibi-
tors and activators or through post-translational modifi-
cation. Most of them belong to some CoSet and most of
CoSets have at least 1 regulated reaction. For example, reg-
ulated reactions 'G6PDH' and 'PDGH' belong to CoSet 1;
'TKI', 'TA' and 'TKII' belong to CoSet 2; 'RPI' and 'PFK'
belong to CoSet 3; 'EN' and 'PK' belong to CoSet 4;
'AdPRT" belongs to CoSet 7. Although there's no regulated
reaction in CoSet 6, it shares the metabolite 'R5P' with reg-
ulated reactions 'R5PI', 'TKI' and 'PRPPsyn'. So the reac-
tions in CoSet 6 can be considered as being regulated
indirectly. The other 2 reactions, 'PRPPsyn' and 'IMPase’,
don't belong to any CoSet.

The relationship between ExPas and CoSets is shown in
table 4. Each CoSet is covered by an ExPa in an 'all or
none' manner, except the CoSets 1 and 3. As for CoSets 1
and 3, some ExPas cover them in an 'all or none' manner
and others cover them in 'one or all but one' mode. We
look over the two exceptions to see which reactions are
used by each ExPa and which are not used. As to CoSet 1,
there are 24 ExPas covering it in an 'all or none' manner
and 15 ExPas overlapping with it in a 'one or all but one'
mode. Among these 15 ExPas, 6 ExPas use one and the
same one reaction 'PGI' while other 9 ExPas use all the
reactions in CoSet 1 only except the reaction 'PGI'. Similar
situation can be found in CoSet 3. There are 12 ExPas
overlapping with it in a 'one or all but one' mode, among
which 6 ExPas use the same reaction 'R5PI' while other 6
ExPas cover all reactions but 'R5PT".

The reasons for the complementary relationship on usage

of reactions in CoSet 1 and CoSet 3 are as follows. 'PGI'
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Table 2: Relationship between ExPas and CoSets for E. coli core metabolic network.

CoSet ID CoSet Size Number of ExPas using k reactions of a CoSet

0 | 2 3 4
| 4 6652 0 0 0 1096
2 3 3556 0 0 4192 -
3 3 2722 0 0 5026 -
4 3 7151 0 0 597 -
5 3 1306 0 0 6442 -
6 3 3984 0 0 3764 -
7 2 3556 0 4192 - -
8 2 5223 0 2525 - -
9 2 928 0 6820 - -
10 2 2240 0 5508 - -
I 2 1352 0 6396 - -
12 2 7106 0 642 - -
13 2 1983 0 5765 - -
14 2 904 0 6844 - -
15 2 928 0 6820 - -
16 2 1697 0 6051 - -
17 2 6499 0 1249 - -
18 2 5671 0 2077 - -
19 2 5181 0 2567 - -
20 2 2193 0 5555 - -

This table illustrates relationship between ExPas and CoSets for E. coli core

cover k reactions in it where k ranges from 0 to size of this CoSet.

belongs to one of 'historical' metabolic pathways named
Embden-Meyerhof-Parnas pathway (EMP), while all other
internal reactions in CoSet 1 are in pathway Pentose Phos-
phate Pathway (PPP). As for CoSet 3, 'R5PI' belongs to
pathway PPP and all other reactions are in EMP. Since
EMP provides the metabolite 'G6P' to PPP and inversely,
PPP offers the metabolite 'GA3P' to EMP, the two path-
ways should cooperate with each other to fulfill the func-
tions of the metabolic network. In order to work
normally, the metabolic network may either utilize an
ExPa using all the reactions in CoSet 1 (CoSet 3) or com-

metabolic network. For each CoSet, we calculate how many ExPas

bine two (or more) ExPas together to fully cover CoSetl
(CoSet 3). By splitting some CoSet on different ExPas, it
may bring redundancy and flexibility which are important
properties for a cell to survive in various environments.

Both 'Ex_NADP' and 'Ex_NADPH' belong to CoSet 1,
indicating the need of RBC cell to balance the NADPH/
NADP ratio. According to "historically" partition of meta-
bolic pathways, when pathway PPP is up-regulated, the
quantity of NADP increases. When metabolic pathway
EMP is up-regulated, the quantity of NADPH comes up.
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CoSets coverage rate of ExPas of E. coli core meta-
bolic network. The y-axis indicates the number of extreme
pathways which have the corresponding CoSets coverage
rates; the x-axis lists the Cosets coverage rates, ranging from
Oto I.

From the point of view of ExPa, 'Ex_NADP', 'Ex_NADPH'
are used together in opposite direction by ExPas. It means
that the fluxes through these reactions increase or decrease
together. As a result, the quantity of NADP increases when
that of NADPH decreases and vice versa. Situation is sim-
ilar for reactions 'Ex_NAD' and 'Ex NADH' in CoSet 5.

Figure 3 is the CoSets coverage rate of RBC model. Though
the coverage rates are not as high as of those of E. coli core
metabolic network, nearly 1/3 ExPas of RBC model has a
CoSets coverage rate higher than 20%. There are 7 ExPas
whose CoSets coverage rate is 0. All these 7 ExPas utilize
relatively few reactions (1-3 internal reactions as well as
the corresponding exchange reactions), among which,
ExPas 10 and 11 utilize the regulated reaction 'IMPase’,
ExPas 12 and 13 are type II ExPas which serve to dissipate
excess ATP, and ExPas 14, 15, 16 which participate in
nucleotide metabolism may be regulated by the quantity
of inosine and adenosine. In short, ExPas are in control of
the regulatory structure of the metabolic network and our
study suggests that the regulatory command usually
spread from the regulated reactions to CoSets and finally
to the related ExPas.

Saccharomyces cerevisiae metabolic network

A full compartmentalized genome-scale metabolic model
for S. cerevisiae, IND750, has been reconstructed and vali-
dated in 2004 [33]. We use this model to represent the
metabolism of S. cerevisiae. Model iND750 accounts for
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646 metabolites, 1149 internal reactions as well as 116
exchange fluxes excluding the objective reaction. Since the
scale of IND750 is too large, enumerating all the ExPas of
the model is computational intractable. Thus we samples
a subset of ExPas to represent the whole ExPas (See Meth-
ods Section). The sampling procedure has executed 1000
times with 250-300 internal reactions being randomly
removed out every time and finally resulted a sample set
of 56496 unique ExPas. The lengths of sample ExPas
range from 20 to 80 (Figure 4). It is difficult to sample the
ExPas containing more than 80 reactions within accepta-
ble cost of time.

One hundred and thirty five CoSets have been identified
for this model. Some CoSets, especially the CoSets con-
taining more than 5 reactions, have no sample ExPa pass-
ing through as if they are forgotten by the metabolic
network. We name them CoSets of solitary island. We have
tried different methods, such as removing all reactions
which cannot be reached from a certain CoSet of solitary
island, to sample some ExPas passing through the 'solitary
island' but in vain because the sampling procedures take
too much time. It seems that, the reactions in a CoSet of
solitary island together with the reactions related to them
form a complex network, and ExPas usually have to take a
long way to go from some exchange reactions to a CoSet of
solitary island and finally reach other exchange reactions.
Because of the network's complexity, there are many
bypaths along the road which causes a combinatorial
explosion. So a CoSet of solitary island is not really solitary,
and it is not too few but too many ExPas passing through
these CoSets that prevent the ExPas computation algo-
rithm, one step of which is enumerating all possible com-
binatorial paths, from catching them.

CoSets and the relationship between ExPas and CoSets are
completely listed in additional files 4 and 5 separately.
Due to the limited space, part of them are shown in table
5 and table 6. Figure 5 is the CoSets coverage rate distribu-
tion of S. cerevisiae model. We find that leaving out of the
CoSets of solitary island, almost all the CoSets are covered
by ExPas in an 'all or none' manner except CoSet 30 which
is covered by ExPas in a complemental mode. CoSet 30
has three reaction members, 'AKGMAL', 'AKGt2r' and
'MALt2r'. Reaction '"AKGMAL' transports alpha ketogluta-
rate (AKG) and malate (MAL) across the epicyte in oppo-
site directions. Reaction 'AKGt2r' transports AKG and
hydrogen ion (H) across the epicyte in the same direc-
tions. And 'MALt2r' transports MAL and H across the epi-
cyte in the same directions as well. If the quantity of AKG
rises, the fluxes through 'AKGMAL' will grow up taking
AKG and H out of the cell and bringing MAL into the cell.
As a result, the quantity of H rises causing an increase on
the flux of '"MALt2r'". Vice versa. These three reactions work
together to balance the AKG/MAL ratio inside the cell and
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Metabolic maps of RBC. The graph is adapted from [25]. CoSet label of each reaction is added and different symbols are
used to represent forward(—) and reverse(—) directions separately.

thus form a CoSet. Among the sample ExPas, we find that
some of them utilize 'AKGMAL' and 'AKGt2r' while others
use 'MALt2r' only. But, there are also some ExPas utilizing
'AKGt2r' while we don't find any sample ExPas that use
the other two reactions in the CoSet. However, according
to the above analysis, there should be some complemen-
tal ExPas utilizing reactions in the CoSet other than
'AKGt2r'. Otherwise, the cell will die due to the insupport-
able internal environment. Since the whole ExPa set is
extremely large, the available ExPa sample set can only
give a glance at the tremendous ExPa set and will certainly
lose some information.

The scale of S. cerevisia metabolic network is much larger.
However, complementary relationship on usage of reac-
tions in a CoSet is repeated as that in E. coli core meta-
bolic network and RBC metabolic network.

Conclusion

In this study, we investigated the relationship between
CoSets and ExPas on the in-silicon representations of three
metabolic networks. These models are different in species
and scale. However, the experiment on each model leads
to similar results that ExPas show strong complementary
relationship on the usage of reactions in the same CoSet.
It implies that this kind of relationship may exist in most
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Table 3: CoSets of RBC metabolic network.
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CoSet ID CoSets Size Reactions
| 7 PDGH, Ex_CO2, Ex NADPH, PGlI, PGL, G6PDH, Ex_NADP
2 4 Xu5PE, TKI, TKIIl, TA
3 4 PFK, ALD, TPI, R5PI
4 3 PGM, EN, PK
5 2 Ex_NAD, Ex_NADH
6 2 PNPase, PRM
7 2 AdPRT, Ex_ADE
8 2 LDH, Ex_LAC

This table lists all CoSets of RBC model. We give each CoSet an ID and list it in the First column. We list CoSet size and reactions it contained in
the second and third column. Reaction names are in abbreviated form. The abbreviation list is in table 7 and the list of internal reactions is in

additional file 2.

of organisms. Since both CoSets and ExPas are generated
from the topology information of metabolic networks,
this phenomenon may reflect some inherent properties
resulting from the topology constraints composed on the
networks.

Moreover, our study not only reveals the interesting rela-
tionship between CoSets and ExPas but also provides a
new sight of how the metabolic network works and how
it is adjusted. The strong relationship between CoSets and
ExPas provides clues about regulated procedure of a met-
abolic network, thus suggests a possible mechanism of

how a metabolic network transferring its phenotype from
one steady state to another. As functional units, ExPas are
in control of the regulatory structure of the metabolic net-
work, and the regulatory command usually spreads from
regulated reactions to CoSets and finally to the related
ExPas. As fluxes through each ExPa change according to
the regulatory orders from its corresponding CoSets, the
flux distribution of the whole metabolic network transfers
towards a new steady state. By interrogating the relation-
ship between CoSets and ExPas, we can tell which ExPas
are possible to be up (down) regulated caused by an
increasing (decreasing) flux in a given CoSet. This result

Table 4: Relationship between ExPas and CoSets for RBC metabolic network.

CoSet ID CoSets Size Number of ExPas using k reactions of a CoSet

0 | 2 3 4 5 6 7
| 7 18 6 0 0 0 0 9 6
2 4 21 0 0 0 18 - - -
3 4 18 6 0 6 9 - - -
4 3 27 0 0 12 - - - -
5 2 19 0 20 - - - - -
6 2 24 0 I5 - - - - -
7 2 30 0 9 - - - - -
8 2 37 0 2 - - - - -

This table illustrates relationship between ExPas and CoSets for RBC metabolic network. For each CoSet, we calculate how many ExPas cover k

reactions in it where k ranges from 0 to size of this CoSet.
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Figure 3

CoSets coverage rate of ExPas of RBC metabolic
network. The y-axis indicates the number of ExPas which
have the corresponding CoSets coverage rates; the x-axis
represents the Cosets coverage rates, ranging from 0 to I.

may help predict the function of regulatory factors acting
on metabolism. However, in order to answer the question
which ExPas are really regulated, more information
should be considered, such as regulatory structure of the
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Figure 4

Length of iIND750's sample ExPas. The y-axis indicates
the number of ExPas which consist of the corresponding
number of reactions; the x-axis represents the number of
reactions contained in a single ExPa. The ExPa sampling proc-
ess found no ExPa whose length is less than 20 or more than
80.
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Figure 5

CoSets coverage rate of ExPas of S. cerevisia model.
The y-axis indicates the number of extreme pathways which
have the corresponding CoSets coverage rates; the x-axis
lists the Cosets coverage rates, ranging from 0 to |.

metabolic networks as well as kinetic and thermodynamic
constraints, which will be our future work.

Methods

ExPas computation and classification

ExPas are computed by an open source tool, 'expa’, devel-
oped by Steven L. Bell and Bernhard O. Palsson [34]. The
exchange fluxes can be separated into two groups: primary
exchange fluxes and currency exchange fluxes. Primary
exchange fluxes are external fluxes and currency exchange
fluxes are fluxes external to metabolism but internal to the
cell [27]. ExPas can be divided into three categories
according to their use of exchange fluxes [35]. Type I
ExPas utilize primary exchange fluxes as well as currency
exchange fluxes. Type II ExPas involve currency exchange
fluxes only. Type III ExPas are solely internal cycles with-
out any exchange fluxes. Since type III ExPas are thermo-
dynamically infeasible [36], we neglect type III ExPas and
only focus on those of type I and II.

CoSets computation

The CoSets of each metabolic model is generated by
COBRA toolbox, an integrated toolbox of functions which
are useful for analysis and simulation of organism's met-
abolic behavior [22]. For each model, uniform random
sampling has been done first in the condition of optimum
growth and results in 100,000 unique sample flux distri-
butions that are available to the network. Then, 10,000
samples have been randomly selected and used to meas-
ure the pairwise correlation coefficients between reac-
tions. We set the threshold of square pairwise correlation
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Table 5: CoSets of S. cerevisiae metabolic network.

http://www.biomedcentral.com/1471-2105/10/S1/S58

CoSet ID CoSet Size Reactions
I 5 HETZK, HMPK 1, PMPK, TMN, TMPPP
13 5 ACGKm, ACOTAIm, AGPRim, ORNTACim, ORNt3m
20 3 PGCD, PSERT, PSP_L
22 3 GCCam, GCCbim, GCCcm
25 3 CYTK2, DCTPD, NDPK7
27 3 CYOOm, CYOR_uém, O2tm
29 3 ARGSL, ARGSSr, OCBTi
30 3 AKGMAL, AKGt2r, MALt2r
31 3 AKGDam, AKGDbm, SUCOASm
33 3 ACSm, ADKIm, PPAm
34 3 ACLSm, DHAD Im, KARAlim
35 3 ABTA, GLUDC, SSALy
38 3 34HPPt2m, TYRTAm, TYRt2m

This table lists the no solitary island CoSets of S. cerevisiae metabolic network model with set size no less than 3. We give each CoSet an ID and list
it in the First column. We list CoSet size and reactions it contained in the second and third column. Reaction names are in abbreviated form. The

abbreviation list is in table 7 and additional file 3.

coefficient to 1 - 1e-8while identifying CoSets of each met-
abolic network assuring that reactions in the same CoSets
have strong correlation with each other. The procedure of
CoSets identification has been carried out 20 times for
each model and the results are quite stable.

Sampling for ExPa subset

We randomly delete a few reactions in S. cerevisiae's
iND750 model, and enumerate all the ExPas of the sub
network. Then, the dimensions of deleted reactions are
inserted back with zeros to these ExPas. As proved in The-
orem 1, the ExPa set derived from sampling is a subset of
the whole ExPa set of iND750. One thousand ExPa sets of
different sub networks of iND750 model have been gen-
erated and merged together without redundancy. The
union of all these ExPas constitute the sample set of ExPas
used in the analysis on Saccharomyces cerevisiae metabolic
network.

Theorem 1. Suppose G is a metabolic network and P is the
ExPa set of G, then for any sub network G', its ExPa set P' is a
subset of P

Proof. We assume that the available steady state flux distri-
bution (v) of G lies in the convex cone ¢

Sv=0,v,20,i=1,..,n

Without loss of generality, we assume G'is generated from
G by deleting reactions v, v, 4, ..., v,, then the steady state

flux distribution of G' lies in the convex cone ¢ ’

, v;20, i=1,..,k-1
Svi =0, 0o

V;=0, i=k,...,n

Assuming that A = {a’|a’e ¢ and a} =0,j=k, .., n}.

’

Obviously, A =c

vaie A, dJP"C P, that
L
1

a'= E a;p', a;20, Vi
i=1
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Table 6: Relationship between ExPas and CoSets for S. cerevisiae model.

CoSet ID CoSet Size Number of ExPas using k reactions of a CoSet

0 | 2 3 4 5
I 5 56445 0 0 0 0 51
13 5 49250 0 0 0 0 7246
20 3 39967 0 0 16529 - -
22 3 54670 0 0 1826 - -
25 3 56393 0 0 103 - -
27 3 9983 0 0 46513 - -
29 3 56454 0 0 42 - -
30 3 47180 8900 416 0 - -
31 3 56132 0 0 364 - -
33 3 53692 0 0 2804 - -
34 3 47600 0 0 8896 - -
35 3 41082 0 0 15414 - -
38 3 39550 0 0 16946 - -

This table illustrates relationship between ExPas and CoSets for S. cerevisiae metabolic network. The CoSets listed here correspond to those in
Table 5. For each CoSet, we calculate how many ExPas cover k reactions in it where k ranges from 0 to size of this CoSet.

Since a} =0,j=k, ..., n then Vpi € P", p; =0,j=k ..., n,

where piis the ith ExPa in P and p; is the jth component

of pi.

Assuming that P' = {p?| p' € P and pj- =0,j=Fk .., n}.
Thus, P"S P’.

Because " C A and P' is a systematically independent
set, P’ CP”. Thus P' = P". Since the ExPa set of G' is
unique, P' is the ExPaset of G\, and P'CP. O

List of abbreviations used
The abbreviations used in this study are listed in table 7.
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Table 7: List of abbreviations used in this study.

http://www.biomedcentral.com/1471-2105/10/S1/S58

Concept Abbreviation

COBRA Constraint-based reconstruction and analysis EM Elementary flux mode
CoSet Correlated reaction set RBC Human Red Blood Cell
ExPa Extreme pathway
Metabolite Abbreviation

AKG Alpha ketoglutarate MAL Malate
GLC Glucose G6P Glucose-6-phosphate
F6P Fructose-6-phosphate FDP Fructose-|,6-phosphate
DHAP Dihydroxyacetone phosphate GA3P Glyceraldehyde-3-phosphate
13DPG 1,3-Diphosphoglycerate 23DPG 2,3-Diphosphoglycerate
3PG 3-Phosphoglycerate 2PG 2-Phosphoglycerate
PEP Phosphoenolpyruvate PYR Pyruvate
LAC Lactate 6PGL 6-Phosphogluco-lactone
6PGC 6-Phosphogluconate RL5P Ribulose-5-phosphate
X5P Xylulose-5-phosphate R5P Ribose-5-phosphate
S7P Sedoheptulose-7-phosphate E4P Erythrose-4-phosphate
PRPP 5-Phosphoribosyl- | -pyrophosphate IMP Inosine monophosphate
RIP Ribose- | -phosphate HX Hypoxanthine
INO Inosine ADE Adenine
ADO Adenosine AMP Adenosine monophosphate
ADP Adenosine diphosphate ATP Adenosine triphosphate
NAD Nicotinamide adenine dinucleotide H Hydrogen lon
NADH Nicotinamide adenine dinucleotide(R) NH3 Ammonia
NADP Nicotinamide adenine dinucleotide phosphate Pi Inorganic Phosphate
NADPH Nicotinamide adenine dinucleotide phosphate(R) COo2 Carbon Dioxide
H20 Water

Pathway/Reaction Abbreviation
EMP Embden-Meyerhof-Parnas pathway PPP Pentose Phosphate Pathway
34HPPt2m 3 4 hydroxyphenyl pyruvate mitochondrial transport via proton symport ACKr acetate kinase
ACOTAIm acteylornithine transaminase irreversible mitochondrial ACONT aconitase
ACt2r acetate reversible transport via proton symport ABTA 4 aminobutyrate transaminase
AGPRim N acetyl g glutamyl phosphate reductase irreversible mitochondrial ACSm acetyl CoA synthetase
AKGDbm oxoglutarate dehydrogenase dihydrolipoamide S succinyltransferase ADHEr Acetaldehyde dehydrogenase
ACGKm acetylglutamate kinase mitochondrial ALD Aldolase
AKGDam oxoglutarate dehydrogenase lipoamide ADKIm adenylate kinase mitochondrial
AdPRT Adenine phosphoribosyl transferase ADKI adenylate kinase
AKGMAL alpha ketoglutaratemalate transporter AKGDH 2 Oxogluterate dehydrogenase
AKGt2r 2 oxoglutarate reversible transport via symport ARGSL argininosuccinate lyase
ARGSSr argininosuccinate synthase reversible ACLSm acetolactate synthase mitochondrial
CYOR_uém  ubiquinol 6 cytochrome c reductase CS citrate synthase
CYOOm cytochrome c oxidase mitochondrial CO2t CO2 transporter via diffusion
CYTBD cytochrome oxidase bd ubiquinol 8 2 protons CYTK2 cytidylate kinase dCMP
D_LACt2 D lactate transport via proton symport DCTPD dCTP deaminase
DHADIm dihydroxy acid dehydratase 2 3 dihydroxy 3 methylbutanoate mitochondrial EN Enolase
ETOHt2r ethanol reversible transport via proton symport ENO enolase
EX_ac(e) Acetate exchange EX_ADE ADE exchange
EX_akg(e) 2 Oxoglutarate exchange EX_co2(e) CO2 exchange
EX_etoh(e) Ethanol exchange EX_for(e)  Formate exchange
EX_fum(e) Fumarate exchange EX _glc(e) D Glucose exchange
EX_h20(e) H20 exchange EX_LAC LAC exchange
EX_lac_D(e) D lactate exchange EX_NAD  NAD exchange
EX_NADH NADH exchange EX_NADP NADP exchange
EX_NADPH NADPH exchange EX_pyr(e) Pyruvate exchange
FBA fructose bisphosphate aldolase EX_o2(e) O2 exchange
FORt formate transport via diffusion G6PDH2r  glucose 6 phosphate dehydrogenase
GCCam glycine cleavage complex lipoylprotein mitochondrial GND phosphogluconate dehydrogenase
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Table 7: List of abbreviations used in this study. (Continued)

http://www.biomedcentral.com/1471-2105/10/S1/S58

GCCcm glycine cleavage complex lipoylprotein mitochondrial GLCpts D glucose transport via PEPPyr PTS
GCCbim glycine cleavage complex lipoylprotein irreversible mitochondrial GLUDC Glutamate Decarboxylase
GAPD glyceraldehyde 3 phosphate dehydrogenase HETZK hydroxyethylthiazole kinase
GAPDH Glyceraldehyde phosphate dehydrogenase H20t H2O transport via diffusion
HMPK I hydroxymethylpyrimidine kinase ATP ICL Isocitrate lyase

KARAIim acetohydroxy acid isomeroreductase mitochondrial LDH Lactate dehydrogenase
NDPK7 nucleoside diphosphate kinase ATPdCDP MALS malate synthase

MALt2r L malate reversible transport via proton symport LDH_D D lactate dehydrogenase

O2t o2 transport diffusion O2tm O2 transport diffusion

OCBTi ornithine carbamoyltransferase irreversible PFK Phosphofructokinase
ORNTACiIm  ornithine transacetylase irreversible mitochondrial PGM Phosphoglyceromutase
ORNt3m ornithine mitochondrial transport via proton antiport PFL pyruvate formate lyase

PGCD phosphoglycerate dehydrogenase PGI Phosphoglucoisomerase

PGK phosphoglycerate kinase PGL 6 phosphogluconolactonase
PGL 6-phosphoglyconolactonase PGM phosphoglycerate mutase
PDGH 6-phosphoglycononate dehydrogenase PMPK phosphomethylpyrimidine kinase
PGPPAmM_SC  phosphatidylglycerol phosphate phosphatase A yeast specific mitochondrial PK Pyruvate kinase

PNPase Purine nucleoside phosphorylase PPS phosphoenolpyruvate synthase
PRM Phosphoribomutase PSERT phosphoserine transaminase
PSP_L phosphoserine phosphatase L serine PTAr phosphotransacetylase

PYRt2r pyruvate reversible transport via proton symport R5PI Ribose-5-phosphate isomerase
SSALy succinate semialdehyde dehydrogenase NADP SUCD4 succinate dehyrdogenase
SUCOAS succinyl CoA synthetase ADP forming TA Transaldolase

SUCOASm Succinate CoA ligase ADP forming TALA transaldolase

TYRt2m tyrosine mitochondrial transport via proton symport TKII Transketolase

TYRTAm tyrosine transaminase mitochondrial TKTI transketolase

TMPPP thiamine phosphate diphosphorylase TMN thiaminase

TPI Triose phosphate isomerase TKI Transketolase

Xu5PE Xylulose-5-phosphate epimerase

Abbreviations used in this study are divided into three parts. They are concept abbreviations, metabolite abbreviations and pathway/reaction

abbreviations.

Additional material

Additional file 1

The reaction abbreviation list of E. coli core metabolic network. This
is an Excel® file of reaction abbreviations and reaction names of E. coli
core metabolic network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S1-S58-S1.xls]

Additional file 2

Maps of Reactions and ExPas of RBC metabolic network. This is a PDF
file with a table and a figure. The table describes all the internal reactions
in RBC metabolic network and the figure shows all the type I and II ExPas
of this model.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S1-858-S2.pdf]

Additional file 3

The reaction abbreviation list of S. cerevisiae metabolic network. This
is an Excel® file of reaction abbreviations and reaction names of S. cere-
visiae metabolic network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S1-S58-S3.xls]

Additional file 4

All the CoSets of S. cerevisiae metabolic network. This is an Excel® file
of all the 135 CoSets of S. cerevisiae metabolic network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S1-S58-S4 .xls]

Additional file 5

Relationship between ExPas and CoSets for S. cerevisiae model (full
version). This is an Excel® file of relationship between ExPas and all the
135. CoSets for S. cerevisiae model.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-10-S1-S58-S5.xls]
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