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Research and development on digital twins of nuclear power systems has focused
on high-precision real-time simulation and the prediction of local complex three-
dimensional fluid dynamics. Traditional computational fluid dynamics (CFD)
methods cannot take into consideration the efficiency and accuracy of fluid
dynamics. In this study, a fast-flow field-prediction framework based on proper
orthogonal decomposition (POD) and deep learning is proposed. Compressed
data containing the original flow field information are obtained using POD and
deep neural network (DNN) is used to construct the POD-DNN flow field
reduction model to achieve fast flow field prediction. The calculation accuracy
and speed of the reduced-order model are analyzed in detail, considering the flow
field of the nuclear compressor and key flow equipment of the nuclear power
system as objects. The results show that the average relative deviation of the POD-
DNN is <10% and calculation time is <1% when compared to those of CFD. This
research shows that the high-fidelity model constructed using model reduction
and deep learning is a feasible method for the realization of digital twins of the
nuclear power system in engineering.
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1 Introduction

With the development of digital technology, a comprehensive and full-cycle digital
simulation of nuclear power systems could reduce the cost of research and development of
reactors and improve safety and economy of future reactors. Building a digital twin of a
nuclear power system through multi-professional and multi-scale real-time/ultra real-time
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simulation, virtual–real interactive feedback, data fusion analysis,
decision iterative optimization, intelligent control, and other
methods that could reflect the entire life cycle of physical
equipment and provide support for research and development,
operation, and maintenance are all the ultimate goal.

Whether the digital twin of a nuclear power system can
accurately reflect and predict the operational state of the physical
nuclear power system in real time depends on an efficient and
accurate description of the complex thermal and hydraulic problems
present in it. The accurate and real-time simulation of local three-
dimensional flow fields is difficult. The traditional method adopts
computational fluid dynamics (CFD) and a system program for
multi-scale coupling simulations. However, obtaining a numerical
solution through CFD is complex and computationally expensive.
The real-time simulation requirements of the digital twin of a
reactor system based on CFD cannot be met with the
advancements in supercomputer technology achieved so far.
Therefore, it is necessary to develop a flow field reduced-order
model (ROM) that not only provides accuracy similar to that of the
CFD solution but is also computationally efficient.

In recent years, the rapid development of machine learning
(ML) technology has demonstrated a strong ability to predict non-
linear problems. Deep learning (DL) is the latest development
direction in ML and was first proposed by Marton and Säaljö
(1976). The DL model is characterized by the use of multilayer
neural networks to unify various algorithms inML, and each layer of
a neural network can map the input non-linearly. The earliest
application of DL in solving flow problems was by Ling et al.
(2016) of Sandia National Laboratories in the United States, who
built a DL network for the Reynolds mean turbulence model by
embedding Galileo invariants into a deep neural network (DNN)
and predicted Reynolds stress, pipeline flow, and velocity field. Since
2016, ML and DL have been applied to typical flow problems such as
flow field morphology, pressure field distribution, and temperature
field diffusion (Miyanawala and Jaiman, 2017; Maulik et al., 2019;
Sekar et al., 2019; Xinyu et al., 2019; Xie et al., 2020; Yuan et al., 2020;
Li Y. et al., 2021; Li et al., 2021b; Chen et al., 2021; Morimoto et al.,
2021). Most of these works are aimed at simple two-dimensional
flow problems, and hence, the results of numerical calculations of
the full flow field can be directly used as the training data set.
However, data from the numerical calculations of the flow field in
actual engineering are very large, and the training of neural networks
often requires very high computing resources (Xinyu et al., 2019),
leading to difficulty in providing reasonable prediction results.

ROMs for low-dimensional feature extraction and analysis have
been established and widely used for the morphological recognition
of flow fields and prediction of dynamic characteristics (Chunyu
et al., 2019), considering the problem of their high data dimensions.
Model downgrading is a key technique for transferring highly
detailed and complex simulation models to other areas and life
cycle phases, which is achieved by reducing the degrees of freedom,
that is, by improving the speed of model execution while
maintaining the required accuracy and predictability. Model
reduction is one of the core technologies of digital twinning,
which can compress the simulation model for real-time
simulation and reuse it in the early stages of product
development and later stages of the product life cycle,
particularly in the product operation and maintenance stages.

A variety of mathematical projection methods in linear algebra,
such as proper orthogonal decomposition (POD) (Sirovich, 1987;
Chen et al., 2015; Chunyu et al., 2019; San, O. et al., 2018) and
dynamic mode decomposition (Schmid, 2010), have been proposed
and used for the linearization analysis of flow fields. For example,
Taira et al. (2020) selected cylinder wakes, wall-bounded flows,
airfoil wakes, and cavity flows, and proved that the reduced-order
mode can be used for the characteristic analysis of flow problems.
Many researchers have combined model reduction with DL to
explore a new method of flow field prediction. Bukka et al.
(2021) proposed an unsteady flow field prediction tool that
combines model reduction and DL. Yousif and Lim (2022) used
ROM and DL algorithms to predict the flow field around a wall-
mounted square column. Gupta and Jaiman (2022) used a POD-
DNNmodel to predict fluid dynamics and vortex shedding patterns
in three-dimensional spheres. They used DL based on physical
simulation data and compared it to a full-order prediction
(i.e., CFD) that significantly improved the speed of online
prediction and provided a new method of rapid prediction for
digital twin reactor flow fields. However, most of the current
research focuses on two-dimensional geometry and a simple flow
field, and more application-oriented research is required.

This study proposes to combine the advantages of model
reduction technology in describing high-dimensional problems
and the ability of DL methods to predict non-linear problems.
Taking the flow field of a compressor, which is the key flow
equipment of the nuclear power system, as the object, the flow
field prediction of the compressor based on POD-DNN is studied,
the ROM model suitable for the flow field prediction of the nuclear
compressor is developed, and the accuracy and efficiency of ROM
prediction are evaluated. This lays the foundation for the research
and development of real-time and ultra real-time digital twins of
nuclear power systems in the future.

2 Reduced-order model based on POD
and DNN

2.1 POD-based fluid dynamics reduction

The POD-based flow field reduction method achieves model
reduction by appropriately truncating the contribution of the
eigenvalue in the POD feature space. For a particular flow field
data set {uk}, uk can be obtained experimentally or numerically. The
goal of the PODmethod is to find a canonical set of orthogonal bases
{ϕi} in the data set u

k andmaximize the projection of the elements of
the data set uk on this basis.

In the fluid dynamics problem, the abovementioned process is
realized as follows. The velocity field u(x, t) is decomposed into the
superposition of the average velocity u0 and pulsating
velocity u′(x, t):

u x, t( ) � u0 + u′ x, t( ). (1)
The pulsating velocity u′(x, t) was decoupled over the temporal

and spatial domains and projected onto a set of spatially orthogonal
basis {ϕi}.

u′ x, t( ) � ∑∞
n�1an t( )φn x( ). (2)

Frontiers in Energy Research frontiersin.org02

Yang et al. 10.3389/fenrg.2023.1163043

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1163043


Substituting Eq. 2 into Eq. 1, we get

u x, t( ) � u0 +∑∞
n�1an t( )φn x( ) � ∑∞

n�0an t( )φn x( ), (3)

where a0(t) � 1 and φ0(x) � u0. The pulsation of the velocity can be
regarded as the result of the linear superposition of a set of time-
independent spatial functions φn(x) which changes over time
according to the corresponding coefficient an(t). For the
convenience of a mathematical form, the space basis φn(x) is
artificially defined to have orthogonal normality on the fluid
domain Ω of the calculation as follows:

φi x( ) · φj x( ) � ∫∫∫
Ω
φi x( )φj x( )dV � 1 i � j

0 i ≠ j
{ . (4)

A correlation matrix C � (Cmn) of the second-order statistical
fluctuation is defined in the orthogonal decomposition reduction
method and is used to describe the autocorrelation of any two
points.

Cmn ≔
1
M

um − u0, u
n − u0( )Ω. (5)

This statistic has no physical meaning in the flow field, but its
magnitude characterizes the pulsating kinetic energy of the flow field
to some extent (Yousif and Lim, 2022). Considering the calculation
of the pulsating kinetic energy ET of the flow field with the number
of steps m, its expression becomes

ET � 1
2
∫

Ω
〈u′ x, t( )2〉dV � 1

2m
∑m

i�1 ∫
Ω
u′ x, ti( )2dV . (6)

Substituting Eq. 2 in Eq. 6 and simplifying it according to Eq. 4
yields

ET � 1
2
∑∞
n�1

an
2 � 1

2
∑∞
n�1

1
m
∑m
i�1
an ti( )⎡⎣ ⎤⎦2

� ∑∞
n�1

1

2m2 ∑m

i�1an ti( )[ ]2 � ∑∞
n�1λn,

(7)

where λn represents the pulsating kinetic energy contained in each
characteristic space base (mode). λn is arranged in the descending
order to obtain a new sequence: λn(λ1 > λ2 > λ3 >/), and the bases
corresponding to these terms φn are POD bases.

We set the number of discrete units of the flow field asm and the
number of snapshot samples as n, and traverse all discrete units and
time steps of the flow field using the abovementioned process.

1
n
UUTWφ � λφ, (8)

where U ∈ Rm×n, Uij � u′(xi, tj) (i � 1, . . . ., m, j � 1, . . . . . . , n),
W ∈ Rm×m, Wij � ΔViδij, and ΔVi are the discrete cell volume.
This formula is equivalent to

1
n
UTWUψn � λnψn, (9)

φ � 1��
λn

√ Uψn. (10)

Equation 9 significantly reduces the computation of the
eigenvalues and eigenvectors by matrix decomposition. It can be
seen that the maximum number of bases that can be used for the

flow field order-reduction model is the number of snapshot samples.
To ensure the accuracy of the order reduction calculation under the
condition of saving computing resources, the number of POD bases
that can be used for flow field reduction was set as NPOD and the
number of POD bases that can be used for intercepting was set as
Nused(0<Nused ≤NPOD) in order to define the magnitude of the
cumulative pulsating kinetic energy that characterizes the selected
POD base.

η � ∑Nused
n�1 λn∑NPOD
n�1 λn

. (11)

WhenNused is larger, η is closer to 1, and the reduction effect of
the flow field is better; however, the calculation cost is higher and
vice versa. Therefore, it is necessary to select a reasonable number of
Nused based on the actual situation and requirements.

2.2 Deep neural network

In this study, a back-propagation neural network (BPNN)
proposed by Rumelhart (1986) was used to predict the flow field
based on POD (Xie et al., 2020). This is a multilayer feedforward
network that minimizes the error mean square between the expected
and actual outputs of the model through a gradient search. The
BPNN has a mature theory, superior performance, and wide
applicability.

A neural network is based on the extension of a perceptron. A
perceptron (Figure 1) is a linear classification model with several
inputs and one output. It is composed of two main parts: an adder
that weighs all inputs to the neuron:

z � ∑w1xi + b, (12)

and a processing unit that produces an output based on a predefined
function called the activation function φ(z). Each neuron has its
own set of weights and thresholds (bias), which it learns through
different learning algorithms.

Multiple perceptrons are connected such that all perceptron
inputs are the same, but after adjustment, only one perceptron
outputs at a time, forming a multivariate classifier. This structure is
called an artificial neural network (ANN). The DNN can be
understood as the neural network of many hidden layers.
According to the location of different layers, the neural network

FIGURE 1
Perceptron.
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layers inside the DNN can be classified into input, hidden, and
output layers, and these are fully connected (Figure 2).

The recommended form of the activation function in modern
neural networks is as follows:

φ z( ) � max 0, z{ }. (13)
This is called a rectified linear unit (ReLU) (Jarrett et al., 2009; Nair

and Hinton, 2010; Glorot et al., 2011). The ReLU is the recommended
activation function by default for most feedforward neural networks. As
the function is close to linear, it is easier to use a gradient-based
optimization algorithm that is used for linear models. The training
process of the neural network was realized using a quadratic function
that minimized the output error. The training process of the neural
network can be described using the following mathematical procedure.

The loss function is defined as the real value of all sample points
ŷi and the predicted deviation between yi, which guides the
direction of the training of the neural network. Mean squared
error loss (MSEloss) is the most commonly used loss function in
ML and DL, and its form is as follows:

JMSE � 1
N
∑N

i�1 yi − ŷi( )2. (14)

The loss function shows the current performance of the neural
network model. The process of using the loss function to train the
neural network and minimize the value of the loss function is called
optimization. The process of the optimization algorithm, which is
based on gradient descent, is as follows:

Calculate the θ gradient of the loss function with respect to

FIGURE 2
Deep neural network.

FIGURE 3
Creation of proper orthogonal decomposition–deep neural network (POD–DNN) and prediction process of neural networks. (A) Acquisition of flow
field snapshot data, (B) creation of POD-DNN, and (C) use of POD-DNN for forecasting.
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gt � θJ θ( ). (15)

The first-order momentum mt and second-order momentum υt
are calculated based on the historical gradient values. The variable
momentum is set as a negative gradient of the exponential decaying
(Wilson et al., 2017) as follows:

mt � ϕ g1, g2, ..., gt( ), (16)
υt � ψ g1, g2, ..., gt( ). (17)

Updated network parameters are as follows:

θt+1 � θt − 1�����
υt + ε

√ mt , (18)

where the small quantity ε is used to avoid a denominator of 0.
In this study, adaptive momentum estimation (Adam)

(Kingma and Ba, 2014) and stochastic gradient descent
(SGD) algorithms (Bottou, 1998) are used. Adam is an
extension of the SGD algorithm, which uses an independent
adaptive learning rate to determine the hyperparameters that
are more robust.

FIGURE 4
Mesh model of cylindrical flow.

FIGURE 5
Comparison of velocity fields predicted by (A) computational fluid dynamics and (B) reduced-order model at 0.15, 0.25, 0.5, and 0.75 T, and
Reynolds number Re = 98.
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For the SGD algorithm, we used the following momentum:

mt � γmt−1 + ηgt , (19)
υt � I2, (20)
ε � 0. (21)

The superparameter γ determines the contribution of the past
gradient’s exponential decaying to the training rate, and η is the
learning rate.

For the Adam algorithm,

mt � η β1mt−1 + 1 − β1( )gt[ ], (22)
υt � β2υt−1 + 1 − β2( )g2t , (23)

where β1 and β2 are the exponential decaying rates of the
estimation of the first- and second-order momenta,
respectively.

2.3 Reduced-order model of flow fields
based on POD and DNN

According to the POD method described in Section 2.1,
dimensionality reduction was performed on the data matrix of
the flow field variables, and the main modes and modal
coefficients of the flow field were extracted. The mode
coefficient after order-reduction was used for DNN training to

FIGURE 6
Comparison of first 10 orders of time coefficients between real and neural network prediction values. Black and red dotted lines represent time
coefficients after reduced-order model prediction and computational fluid dynamics reduction, respectively.

Frontiers in Energy Research frontiersin.org06

Yang et al. 10.3389/fenrg.2023.1163043

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1163043


directly predict the mode coefficient under unknown conditions
and reconstruct the flow field on a POD orthogonal basis. This
process avoids solving higher-order non-linear partial
differential equations and helps achieve real-time prediction of
the local flow field.

The POD-DNN method consists of three parts as shown in
Figure 3: (A) acquisition of flow field snapshot data, (B) creation of
POD-DNN, and (C) use of POD-DNN for forecasting. This
process involves the following steps: (1) sample acquisition:
flow field measurements, such as laser particle image
velocimetry, or CFD codes, such as OpenFOAM and Fluent, are
used to obtain simulation data during the creation of the ROM. (2)
The variable matrix of the flow field is decomposed by POD, the
order of the flow field is reduced, and the POD mode and mode
coefficients are obtained. (3) Taking the boundary conditions as
input and variable data after reduced order as output, the POD-
DNN model of flow field prediction is finally obtained through the
training of the neural network, and verification and optimization
of the test sample set. (4) The neural network was used to predict
the flow field and output the POD modal coefficient under the
predicted conditions. (5) Based on POD, the flow field variables are
reconstructed after order reduction to achieve flow field
restoration, and the flow field variables in a matrix form are
obtained.

2.4 Preliminary verification of POD-DNN
flow field prediction model

The cylindrical flow around the cylinder shown in Figure 4 was
considered to analyze the prediction effect of the POD-DNN flow
field prediction model. CFD was used to obtain flow field data for
100 different operating conditions (inlet Reynolds number). A total
of 100 time steps were calculated for each operating condition point,
and 50 of them were randomly selected as the sample data, namely,
the training set. The first 20 orders of the main modes and time
coefficients after the POD decomposition were used to reconstruct
the training data of the flow field and ROM.

The DNN forward propagation algorithm provided by the
PyTorch platform was used for training. Six layers of the neural
network were set, SGD was selected by the optimizer, the learning
rate was set to 0.00002, the number of training was set to 3,000, and
the training took 30 s. The reduction in the data scale significantly
improved the training efficiency of the neural network.

The flow field results predicted by the POD-DNN are shown in
Figure 5. A comparison between the ROM and instantaneous
velocity field calculated using CFD at the 45th operating
condition point is provided. By comparing the original flow field
with the predicted flow field, it can be seen that the neural network
successfully predicts the basic characteristics of the flow field. The
ROM was in good agreement with the velocity field distribution
calculated using the CFD. The ROM obtains the von Karman vortex
street formed by the downstream flow field of the cylinder, and the
local velocity in the wake region is slightly different from that of the
CFD result.

By calculating the average relative deviation between the
predicted and real values of each mesh quantity, the accuracy of
the POD-DNN is quantitatively analyzed after the reconstructed
flow field. The results show that the relative deviation of the ROM
was <3%. Figure 6 compares the time coefficients of the first
10 modes with real data and predicted results, and it can be seen
that they match each other. The period of the second- and third-
order mode coefficients is half that of the vortex shedding period,
and the higher-order POD mode contains the higher-order
harmonics in fluid dynamics (Chiekh, M. B. 2013). The
abovementioned results show that the flow field prediction
deviation mainly originates from the deviation caused by POD,

TABLE 1 AR2 values of predicted results.

Time/T AR2 of Ux AR2 of Uy

0.1 0.9998 0.9998

0.2 0.9997 0.9994

0.3 0.9994 0.9983

0.4 0.9995 0.9982

0.5 0.9993 0.9968

0.6 0.9992 0.9964

0.7 0.9995 0.9977

0.8 0.9997 0.9985

0.9 0.9999 0.9995

1 0.9998 0.9998
FIGURE 7
Distribution of AR2 values with time step.

TABLE 2 Comparison of time consumption between full-order model
(computational fluid dynamics) and reduced-order model.

Calculation method Calculation time (s)

Proper orthogonal decomposition–deep neural
network

<1

Computational fluid dynamics 115.46
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omitting the higher-order mode, and this omission does not have a
significant impact on the flow field of the reference problem used in
this study. In this study, POD was used to truncate the higher-order
mode to reduce the data dimension, the DNN was used to predict
the time coefficient, and the final reconstruction of the flow field
method was both reasonable and feasible.

Furthermore, the generalization of the neural network was
analyzed, which indicated its adaptability to new samples. Adjusted
R-square (AR2) was used for quantitative characterization. The value
ofAR2 reflects the generalization performance of the ROM, that is, the
degree of the ROM fitting toCFD data. The larger the value ofAR2, the
better the fitting effect or prediction performance of the DNN. The
mathematical expression for AR2 is as follows:

R2 � 1 − ∑n
i�1 ui − ûi( )2∑n
i�1 ui − �ui( )2, (24)

AR2 � 1 − 1 − R2( ) n − 2( )
n − p − 1

, (25)

where ui and ûi are the predicted values andCFD, respectively, �ui is the
average of the CFD results, n is the number of sampling points or
the number of grid nodes, and p is the typical sample number or
number of input parameters of the neural network. For the
cylindrical flow in this study, p = 30. The AR2 range distributions
are presented in Table 1 and Figure 7. The AR2 values of all time
steps are >0.996, which indicates that the neural network model
has a good generalization performance. The relative deviation of
the ROM is <3%, which satisfies the requirements of engineering
design applications.

Table 2 summarizes CFD and ROM calculation times. After the
acceleration of the graphics processing unit and completion of
training, the ROM has to run for only a few seconds to generate
the desired flow field variables. Under the existing grid scale, the
speed of using the POD-DNN ROM is two orders of magnitude
higher than that of the CFD numerical simulation, and it can easily

predict the flow field variables at any moment, greatly reducing the
calculation time and cost, and shortening the calculation cycle. It is
noteworthy that sampling and training of data should be prepared
prior to the ROM calculation.

3 Fast prediction of compressor three-
dimensional flow field

The supercritical CO2 centrifugal compressor is vital for the
supercritical CO2 Brayton cycle, which is the potential power cycle
of the fourth generation nuclear power system. The supercritical
CO2 compressor has a compact structure, high efficiency, and broad
application potential. It produces low temperature and low pressure
CO2, which completes the energy conversion through the blades
driven by the motor and converts it into a high pressure gas,
providing power for the supercritical CO2 Brayton cycle. In the
development of the nuclear power digital twin system, the
compressor is the key component. Due to its huge consumption
of numerical calculations, the real-time twinning operation of the
compressor requires a faster calculation method. The POD-DNN in
this study provides a feasible solution for the development of this
digital twin.

3.1 Calculation object and establishment of
POD-DNN flow field prediction model

The geometric model of the fluid domain of the supercritical
CO2 centrifugal compressor is shown in Figure 8. The number of
grids used was 920,000. The variables to be predicted included
density, pressure, and velocity in three directions, and the amount of
data was 4.63 million. The data were obtained through CFD
calculations using 22 different inlet temperature and flow
combinations, of which 20 working conditions were used as the
training sets and two were used as the test data.

Owing to the large number and variety of flow field variables,
a special incomplete neural network structure was designed in
this study, which was classified into public and private layers, as
shown in Figure 9. The public and private layer networks were

FIGURE 8
Compressor fluid domain model.

FIGURE 9
Incomplete neural network.
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FIGURE 10
Comparison of reconstructed and original flow fields after POD truncation.

FIGURE 11
Comparisons of (A, B) velocity fields and (C, D) morphology of pressure fields. Certain differences between prediction results of POD–DNN (A, C)
and results of calculation of computational fluid dynamics (B, D) in some areas are observed.
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fully connected, but the hidden and output layer neurons in the
private layer network were partially connected. The private layer
finally connects the specific output layer neuron to output
specific variable results such as speed vector and pressure. In
this way, the learning process of each layer parameter of the
neural network was more targeted to provide a better fitting effect
for the network.

3.2 Results and discussion

Following the decomposition of POD, the relative deviation
between the flow field reconstructed by POD and the original flow

field after the 5th-, 10th-, and 15th-order truncations of each
working condition is shown in Figure 10. It can be seen that
with an increase in the POD truncation order, the relative
deviation of POD reduction for each part of the flow fields is
gradually reduced. Considering the large scale of data used for
training, it is reasonable to use the 15-order truncation as the
main mode for flow field reconstruction.

3.2.1 Results of velocity field prediction
Figures 11A, B show a comparison of the velocity cloud diagram

between the POD-DNN and CFD on the z = 0 section. We have
achieved rapid prediction of such a complex flow field based on deep
learning for the first time. Previous research had primarily
concentrated on simple two-dimensional flow or flow around a
three-dimensional square cylinder, as was shown by Yousif (2022).
The POD-DNN provides results that are consistent with the physical
practice. The speed of the fluid rapidly increases as it enters the
rotor, then it enters the diffuser, and gradually slows down before
exiting through the volute. The highest speed found is in
supercritical CO2 at the rotor blade, which is slightly higher than
the CFD result.

The relative deviation between the predicted value of the POD-
DNN and the real value (CFD result) is defined as

σ � ui − ûi| |
ûi

. (26)

As shown in Figures 12A, 13A, through further quantitative
analysis, the average relative deviation of the velocity prediction
of 920,000 grid points is 9.7% and the prediction deviation of
most grid points is within 15%. The velocity prediction error of
the POD-DNN at the inlet pipe is approximately 30%, and the
error in the rotor area is <10%. However, based on the
distribution of the diffuser and volute, the prediction error of
most grid points is <15%. When compared with the cylindrical
flow around the cylinder, the POD-DNN significantly increases
the deviation in predicting the compressor velocity field. Owing
to the complexity of the flow field morphological structure, there
is still a large deviation in the reconstructed flow field after the
POD process, even though the 15th-order mode was adopted as

FIGURE 12
Scatter plots of relative deviations of prediction of (A) velocity and
(B) pressure fields in each region.

FIGURE 13
Relative deviations of prediction of (A) velocity and (B) pressure fields.
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the main mode of flow. A large reduction in the mode makes the
training process more difficult, and the scale of data after
dimensionality reduction affects the performance of the neural
network. This result indicates that under this condition, the
neural network training process may be trapped in a local
optimum point.

3.2.2 Results of pressure prediction
Figures 11C, D show a comparison of the pressure nephograms

calculated using POD-DNN and CFD. It is observed that the
pressure field results are similar, except for the inlet pipe. After
supercritical CO2 enters from the inlet pipe and passes through the
rotor and diffuser, the pressure along the flow direction increases
rapidly. The prediction of the internal pressure field is in accordance
with the measured results.

Further quantitative analysis shows that the average relative
deviation between the results of pressure field prediction and CFD is
3.05%, which significantly improved the accuracy of the prediction
of pressure when compared with that of the velocity field. The
pressure distribution was related to flow resistance and blade work
pressurization, and it was smoother than that of the velocity field,
suggesting that the prediction effect of the DNN was better.
Figure 12B shows the predicted deviation of each calculation
domain, and Figure 13B shows the columnar statistical
distribution of the predicted relative deviation of the pressure
field. It can be seen that the predicted deviation of the pressure
value mainly originates from the inlet pipe and diffuser, and the
deviation of the predicted pressure value relative to the true value
reaches 13%.

In terms of generalization ability, the average relative
deviation of the POD-DNN in the supercritical CO2

compressor flow field prediction was <10%when compared
with that of CFD. For the descending order of the compressor
flow field, the characteristic number was p = 25 and the
calibration determination coefficient was AR2 = 0.9449. When
compared with the surrounding cylindrical flow, three-
dimensional flow field data of the compressor were large, flow
characteristics were complex, and velocity and physical
properties changed significantly. Therefore, the generalization
ability of the neural network of the POD-DNN flow field
prediction model of the compressor is not as good as that of
the simple flow field of the surrounding two-dimensional flow.
However, it plays a guiding role in the rapid design optimization
of nuclear power systems and the determination of system
operating conditions.

3.2.3 Prediction efficiency
In terms of the computational cost represented by the training

time of the DNN, under the same computational resource
configuration, the CFD calculation of each boundary condition
took approximately 20 min, whereas the time spent on training
the neural network was more than 6 h. However, the POD-DNN
after training can provide modal coefficients in a few seconds and
reconstruct the flow field, which takes <1% of the time required by
CFD. This demonstrates that the presented model shows a
remarkable reduction in the computational cost when compared
to a full CFD simulation.

The POD-DNN used in this study is limited by resources and the
performance of the server.

4 Conclusion

In this study, the feasibility of rapid flow field solutions in
nuclear power system simulations, using model order-reduction
technology based on DL, is discussed. A flow field prediction model
based on POD and DNN was developed. The DNN was trained and
tested using CFD data from the key flow equipment of the nuclear
power system, and the prediction ability of the POD-DNN was
verified.

For the compressor flow field prediction of key equipment in the
nuclear power system, the first 15th-order POD modal coefficients
were used for DNN training, and the average relative deviation
between ROM and CFD was <10%. The verification results showed
that the POD-DNN has the potential to predict large-scale complex
flows. The ROM based on the POD-DNN framework can relatively
extract the characteristics of the flow field accurately. Although the
training time was long, and there was a gap between the predicted
and actual results, the strong prediction ability and real-time
simulation potential of flow field problems were reflected.

In a nuclear power system, the flow field of the core fuel
assembly is the most complex and is a major cause of concern for
researchers. The mesh number required for CFD simulation is as
high as hundreds of millions or even billions, thereby restricting
its use. The implementation of the POD-DNN in this study shows
good utilization potential; however, it is necessary to further
develop the order-reduction and prediction methods that can be
applied to large-scale flow fields using big data technology in
order to arrive at an efficient order-reducing algorithm that
utilizes the deeper neural network model and reasonable
sampling methods to ensure prediction accuracy with
minimum samples.
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