10 research outputs found

    An experimental and theoretical study of density wave oscillations in two-phase flow

    Get PDF

    On the Nature of Pulsar Radio Emission

    Get PDF
    A theory of pulsar radio emission generation, in which the observed waves are produced directly by maser-type plasma instabilities operating at the anomalous cyclotron-Cherenkov resonance ωkv+ωB/γres=0\omega- k_{\parallel} v_{\parallel} + \omega_B/ \gamma_{res}=0 and the Cherenkov-drift resonance ωkvkud=0\omega- k_{\parallel} v_{\parallel} - k_{\perp} u_d =0, is capable of explaining the main observational characteristics of pulsar radio emission. The instabilities are due to the interaction of the fast particles from the primary beam and the tail of the distribution with the normal modes of a strongly magnetized one-dimensional electron-positron plasma. The waves emitted at these resonances are vacuum-like, electromagnetic waves that may leave the magnetosphere directly. In this model, the cyclotron-Cherenkov instability is responsible for core emission pattern and the Cherenkov-drift instability produces conal emission. The conditions for the development of the cyclotron-Cherenkov instability are satisfied for both typical and millisecond pulsars provided that the streaming energy of the bulk plasma is not very high γp10\gamma_p \approx 10. In a typical pulsar the cyclotron-Cherenkov and Cherenkov-drift resonances occur in the outer parts of magnetosphere at rres109cmr_{res} \approx 10^9 cm. This theory can account for various aspects of pulsar phenomenology including the morphology of the pulses, their polarization properties and their spectral behavior. We propose several observational tests for the theory. The most prominent prediction are the high altitudes of the emission region and the linear polarization of conal emission in the plane orthogonal to the local osculating plane of the magnetic field.Comment: 39 pages, 10 figure

    First Search for Gravitational Waves from Known Pulsars with Advanced LIGO

    Get PDF
    We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are able to set the most constraining upper limits yet on their gravitational-wave amplitudes and ellipticities. For eight of these pulsars, our upper limits give bounds that are improvements over the indirect spin-down limit values. For another 32, we are within a factor of 10 of the spin-down limit, and it is likely that some of these will be reachable in future runs of the advanced detector. Taken as a whole, these new results improve on previous limits by more than a factor of two

    An experimental and theoretical study of density-wave oscillations in two-phase flow.

    No full text
    Massachusetts Institute of Technology. Dept. of Nuclear Engineering. Thesis. 1970. Sc.D.Errata leaf inserted between leaves 4 and 5. Vita.Bibliography: leaves 168-174.Sc.D

    Nuclear Reactors: Physics and Materials

    Get PDF
    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver

    Alternatives to nuclear energy?

    No full text

    Excited single-phase (Liquid) jets

    No full text
    ISSN:1343-8875ISSN:1875-897

    Turbulent transport mechanisms in oscillating bubble plumes

    No full text
    ISSN:0022-1120ISSN:1469-764

    Turbulent transport mechanisms in oscillating bubble plumes

    No full text
    International audienceThe detailed investigation of an unstable meandering bubble plume created in a 2-m-diameter vessel with a water depth of 1.5 m is reported for void fractions up to 4% and bubble size of the order of 2.5 mm. Simultaneous particle image velocity (PIV) measurements of bubble and liquid velocities and video recordings of the projection of the plume on two vertical perpendicular planes were produced in order to characterize the state of the plume by the location of its centreline and its equivalent diameter. The data were conditionally ensemble averaged using only PIV sets corresponding to plume states in a range as narrow as possible, separating the small-scale fluctuations of the flow from the large-scale motions, namely plume meandering and instantaneous cross-sectional area fluctuations. Meandering produces an apparent spreading of the average plume velocity and void fraction profiles that were shown to remain self-similar in the instantaneous plume cross-section. Differences between the true local time-average relative velocities and the difference of the averaged phase velocities were measured; the complex variation of the relative velocity was explained by the effects of passing vortices and by the fact that the bubbles do not reach an equilibrium velocity as they migrate radially, producing momentum exchanges between high- and low-velocity regions. Local entrainment effects decrease with larger plume diameters, contradicting the classical dependence of entrainment on the time-averaged plume diameter. Small plume diameters tend to trigger ‘entrainment eddies' that promote the inward-flow motion. The global turbulent kinetic energy was found to be dominated by the vertical stresses. Conditional averages according to the plume diameter showed that the large-scale motions did not affect the instantaneous turbulent kinetic energy distribution in the plume, suggesting that large scales and small scales are not correlated. With conditional averaging, meandering was a minor effect on the global kinetic energy and the Reynolds stresses. In contrast, plume diameter fluctuations produce a substantial effect on these quantities
    corecore